КОНФИГУРАЦИЕЙ АТОМОВ И ИОНОВ

Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе.

Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li+, Na+, K+, Mg2+, Са2+, Sr2+, Ba2+ и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек. Такие катионы,

как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag+, Hg2+, As(III), As(V), Sn+, Sb(III), Pb2+, Bi3+ и др., обладающие многоэлектронным внешним слоем (18 и 18 + 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 + 2e-) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам.

Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (Mn2+, Fc2+, Fe3+, Co2+, Ni2+ и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп.

Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов.

Группа катионов I II III IV V
А Б А Б
Характеристика группы Сульфиды и карбонаты растворимы в воде Сульфиды растворимы в воде, карбонаты - нет Сульфиды или образующиеся вместо них гидроксиды растворимы в разбавленных кислотых Сульфиды нерастворимы в разбавленных кислотых
Гидроксиды амфитерны Гидроксиды неамфотерны Сульфиды нерастворимы в Na2S Сульфиды растворимы в Na2S Хлориды нерастворимы в воде
Катионы Na+, K+, NH4+ Mg2+, Ca2+, Sr2+, Ba2+ Al3+, Cr3+, Zn2+ Fe2+, Fe3+, Mn2+, Co2+, Ni2+ Cu2+, Bi3+, Cd2+ As(III, V), Sb(III, V), Sn2+, Sn(IV), Hg2+ Ag+, Hg22+, Pb2+
Групповой реагент Нет (NH4)2CO3 (NH4)2S в присутствии NH4OH и NH4Cl H2S в присутствии HCl HCl

Акво - ионы меди (II) [Си(Н2О)п]2+ окрашены в голубой цвет, поэтому растворы солей меди (II) имеют голубую окраску с разными оттенками (от голубой до сине-зеленой). В водных растворах акво - ионы меди (II) частично гидролизуются с образованием растворимых гидроксо-аквокомплексов состава [Cu(H2O)n.m(OH)m]2-m по схеме:

[Cu(H2O)]2+ + mH2O = [Cu(H2O)n.m(OH)m] m + тН3О+

1.Реакция с щелочами.

Си2++ 2 ОН-— Си(ОН)2 (сине-зеленый)

Смесь осторожно нагревают до кипения и кипятят до потемнения осадка. Си(ОН)2 разлагается, теряя воду и образуется черный осадок оксида меди (II) СuО: Сu (ОН)2 — СuО (черный) + Н2О

Осадок Сu (ОН)2 растворяется в кислотах, в растворах аммиака (с образованием комплекса [Cu(NH3)4] + синего цвета), комплексообразующих органических кислот (лимонная, винная), частично растворим в концентрированных щелочах с образованием гидроксокомплексов меди (II).

2.Реакция с аммиаком (фармакопейная).

СuСЬ + NHrH2O — Си(ОН)С1 |(сине-зеленый) В избытке аммиака осадок растворяется с образованием ярко синего раствора:

Сu (ОН)С1 + 4 NH3-H2O — [Cu(NH3)4]2+ + ОН- + СГ + 4 Н2О В кислой среде комплексный тетрамминмедь (II) - катион разрушается:

[Си(Ш3)4]2+(ярко - синий) + 4 Н3О+ — [Сu (Н2О)4]2+(голубой) + 4 NH4+ и окраска раствора из ярко-синей переходит в голубую (цвет аквокомплекса меди (II)). К аммиачному комплексу меди (II) прибавляют по каплям разбавленный раствор одной из кислот - НС1, HNO3 или H2SO4. Окраска раствора из ярко - синей переходит в голубую. Мешают катионы Со2+, Ni2+, олово (II).

3.Реакция с гексацианоферратом (II) калия.

2Cu2+ + [Fe(CN)6]4- — Си2[Ре(СЫ)6]|(красно-коричневый).

Капельный метод на фильтровальной бумаге: на лист фильтровальной бумаги, пропитанной раствором ферроцианида калия, наносят каплю раствора соли меди (II). На бумаге образуется красно-коричневое пятно.

Осадок не растворяется в разбавленных кислотах, но растворяется в 25%-м водном аммиаке:

Cu,[Fe(CN)6] + 12 NH3+ 4 Н2О — ( NH4)4[Fe(CN)6] + 2 [Cu(NH3)4](OH)2 Проведению реакции мешают катионы, также образующие окрашенные осадки .и ферроцианидов (Fe3+, Со2т, Ni2+).

4.Реакция с тиосульфатом натрия.

2Си2+ + 2 82О32Хиз6ыток) + 2 Н2О — Cu2S |(темно-бурый) + §j +4 H++~2SO42~

Выпадает темный осадок, содержащий смесь Cu:S и S.

5. Реакция с купроном (1-бензоиноксимом).

Реакцию проводят в аммиачной среде. Осадок не растворяется в избытке аммиака.

6. Реакция восстановления меди (II) металлами до металлической меди (фармакопейная).Реакцию дают металлы, расположенные в ряду напряжений металлов левее меди.

Cu2+ + Zn -- Си + Zn2+

Си2+ + Fe -> Си + Fe2+

3 Си2+ +2 А1 -► 3 Си +2 А13+

8. Соли меди окрашивают пламя газовой горелки в изумрудно-зеленый цвет. Реакция с тиоцианат - ионами.

Си2+ + 2 SCN- — Cu(SCN)2J-+ CuSCN| + SCN- Образуется

черный осадок Cu(SCN)2, постепенно переходящий в белый CuSCN.

Другие реакции меди (II).

Катионы Си + с сульфид -ионами дают черный осадок сульфида меди CuS; с фосфатами

- голубой осадок Си3(РО4)2. Известны реакции комплексообразования меди (II) с различными органическими реагентами - купроином, купфероном, дитиоксамидом и др.

40. Методы количественного анализа-гравиметрический и титриметрический (объёмный).

Титриметрический анализ (титрование) — методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объёма раствора реактива точно известной концентрации, расходуемого для реакции с определяемым веществом. Титрование — процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.