III группа: 6-членные гетероциклы с 1 гетероатомом азота

(гет10) Пиридин. За счет атома азота пиридин проявляет основные свойства. Ядро пиридина содержится в молекулах некоторых алкалоидов - никотина, витамина "РР".

(гет11) Никотиновая кислота и ее амид (никотинамид) получили известность как две формы витамина РР, применяющегося в медицине для лечения пеллагры. Никотинамид является составной частью ферментных систем, ответственных за окислительно-восстановительные процессы в организме, а диэтиламид никотиновой кислоты (кордиамин) служит эффективным стимулятором ЦНС.

IV группа: 6-членные гетероциклы с 2 гетероатомами

Представителем этой группы гетероциклических соединений является пиримидин. (гет12) Производные пиримидина объединяются в группу пиримидиновых оснований. Сюда относятся кислородные производные пиримидина: урацил, тимин, цитозин. Для кислородных производных пиримидина характерен новый вид структурной изомерии, которая называется таутомерией.

Явление, при котором изомеры переходят один в другой и находятся в состоянии равновесия, называется таутомерией. А изомеры, обратимо переходящие один в другой, называются таутомерными формами. Те случаи таутомерии, в которых происходит обратимое превращение лактимной и лактамной групп, называется лактим-лактамной таутомерией. Лактимы - это оксисоединения, в которых гидроксильная группа стоит при атоме углерода с двойной связью. Такие соединения крайне неустойчивы, в них все время происходит внутримолекулярная перегруппировка атомов: разрывается двойная связь, атом водорода из гидроксильной группы переходит к смежному по двойной связи атому азота. (гет13)

Разберем это явление на конкретных примерах.

а) Цитозин (4-амино-2-оксипиримидин)

Цитозин, как и другие кислородные производные пиримидина (урацил, тимин), может находиться в виде двух изомеров, один из них называется лактимной формой, другой - лактамной формой. (гет14)

б) Урацил (2,2-диоксипиримидин) (гет15)

в) Тимин (5-метилурацил) (гет16)

Пиримидиновые основания являются структурными компонентами нуклеиновых кислот (ДНК, РНК).

V группа. Конденсированные системы гетероциклов

Гетероциклические системы, состоящие из двух гетероциклов и имеющие два общих атома углерода, называются конденсированными.

[пурин, (гет17)] Пуриновая группировка входит во многие вещества (нуклеиновые кислоты, нуклеотидные коферменты), участвующие в осуществлении важнейших биологических процессов живых организмов. Пуриновое ядро является фрагментом некоторых алкалоидов.

Для гидроксилпроизводных пурина возможна лактим-лактамная таутомерия и прототропная таутомерия, связанная с переходм атома водорода от N-7 к N-9 и наоборот.

Пуриновые основания (аденин, гуанин)

Аденин (6-аминопурин) (гет18)

Гуанин (2-амино-6-оксипурин) (гет19)

Эти вещества характеризуются высокой стабильностью и имеют исключительное значение в биологии. Аденин является составной частью АТФ. Аденин и гуанин входят в состав нуклеиновых кислот (РНК, ДНК).

Ксантин (2,6-диоксипурин) (гет20)

Встречается в растениях. Вместе с кофеином он содержится в чае, в организме животных (в крови, печени, мозге).

Огромное значение в медицине имеют производные ксантина – теофиллин, теобромин и кофеин. Теофиллин обладает сильным мочегонным действием, возбуждает, стимулирует центральную нервную систему (ЦНС); кофеин действует на ЦНС возбуждающим образом, а в небольших количествах повышает работоспособность. На этом основано широкое применение чая, кофе, какао, содержащих кофеин.

Мочевая кислота (2,6,8-триоксипурин) (гет21)

Мочевая кислота – конечный продукт метаболизма пуриновых соединений в организме. Она выделяется с мочой в количестве 0,5-1,0 г в сутки. Соли мочевой кислоты называются уратами. При некоторых нарушениях в организме они откладываются в суставах, напр., при подагре, а также в виде почечных камней. В этих случаях для лечения применяют неорганические соли лития (напр., Li2CO3), которые образуют хорошо растворимые соли мочевой кислоты, быстро выделяемые из организма.

Гидроксисоединения

Гидроксисоединения – это вещества, которые в своем составе содержат гидроксильные группы.

К ним относятся спирты, фенолы и др. классы органических соединений.

Спирты – это гидроксосоединения, в молекулах которых гидроксильные группы находятся у насыщенного атома углерода в состоянии sp3 гибридизации.

Спирты классифицируют по количеству гидроксильных групп на одноатомные, содержащие 1 гидроксильную группу (напр., этанол) и многоатомные, содержащие 2 или более гидроксильных групп (напр., глицерин, сорбит). Сорбит применяется в качестве заменителя сахара.

Инозит – это структурный компонент липидов мозгового вещества.

(гидр1,2,3)

В зависимости от характера звеньев, с которыми соединяются гидроксильные группы, спирты делятся на:

1. первичные, в которых гидроксильные группы находятся у первичного звена атома углерода. Пр. СН3–CH2–CH2–OH (пропанол-1);

2. вторичные спирты - у которых гидроксильная группа соединяется со вторичным звеном атома углерода. Пр.: пропанол-2 (гидр4)

3. третичные – в которых гидроксильные группы соединяются с третичным звеном атома С. Пр.: 2-метилпропанол-2 (гидр5)

Химические свойства спиртов

- Реакции окисления спиртов. В организме окисление спиртов протекает в присутствии ферментов, которые называются дегидрогеназы. При этом происходит дегидрирование спиртов. Молекула спирта теряет 2 атома водорода – это эквивалентно отщеплению двух протонов и двух электронов (2Н+ и 2е) или Н+ и одного гидрид-иона (Н-).

1. Окисление первичных спиртов [пропанол-1 в пропаналь +НАДН+ Н+, (гидр6)]

2. Окисление вторичных спиртов. [пропанол-2 в ацетон +НАДН+ Н+, (гидр7)]

Т.о., при окислении первичных спиртов образуются альдегиды, а вторичных – кетоны.

- Реакции нуклеофильного замещения (SN)

в общем виде.

[субстрат+реагент-нуклеофил=продукт+уходящая группа нуклеофуг, (гидр8)]

В ходе реакций нуклеофильного замещения атакующий реагент - нуклеофил отдает свою пару электронов субстрату, образуя продукт. Уходящая группа – нуклеофуг отделяется со своей парой электронов. Рассмотрим реакцию нуклеофильного замещения на примере получения хлорэтана из этанола. (гидр9)

Поскольку гидроксильная группа (-ОН) в составе субстрата этанола является плохо уходящей группой, то прямое нуклеофильное замещение осуществить не удается. Поэтому гидроксильную группу в присутствии ионов Н+ переводят в ониевую группировку, при этом образуется ион этилоксония, от которого отделяется молекула воды – хорошо уходящая группа. Реагент - нуклеофил Сl- с парой электронов присоединяется к атому углерода субстрата, образуя продукт - хлорэтан, который в медицинской практике используется для ингаляционного наркоза.

- Реакции хелатообразования. Многоатомные спирты, проявляя более выраженные кислотные свойства, по сравнению с одноатомными спиртами, вступая в реакции с Сu(ОН)2 (осадком голубого цвета в щелочной среде) образуют растворимый хелатный комплекс ярко-синего цвета - эта реакция используется как качественная на многоатомные спирты. При этом в молекулах многоатомных спиртов реагируют гидроксильные группы a-диольного фрагмента. Например: a-диольный фрагмент, (гидр10)

[2глицерина+ Cu(OH)2+ 2OH-= анионный хелатный комплекс глицерата меди (II)+ 4воды, (гидр11)]