рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электронные эффекты заместителей

Электронные эффекты заместителей - раздел Электроника, Взаимное Влияние Атомов В Органических Молекулах Электрон...

Взаимное влияние атомов в органических молекулах

Электронные эффекты заместителей

Органическая химия - это химия соединений углерода, которых в настоящее время насчитывается около 7 млн. В молекулах органических соединений имеются ковалентные d- и p-связи, которые могут быть полярными и неполярными.

Неполярные ковалентные возникают между атомами с одинаковыми величинами электроотрицательности, напр., в пропане СН3-СН2-СН3. В молекулах органических соединений атомы углерода могут соединены с атомами O, N, Cl, Br, F и другими гетероатомами, имеющими более высокое значение электроотрицательности по сравнению с атомами углерода. Это приводит к поляризации ковалентной связи, напр., в молекуле 1-хлорпропана (эфф1). Гетероатом или заместитель вызывает поляризацию не только «своей» d-связи, но и передает свое влияние на соседние d-связи, проявляя индуктивный эффект.

Индуктивный эффект - это передача электронного влияния заместителя по цепи d-связей.

Индуктивный эффект обозначается I или знаком «®», причем острие стрелки направляется в сторону более электроотрицательного элемента. Действие индуктивного эффекта наиболее значительно проявляется на двух ближайших атомах углерода, а через 3-4 связи он затухает. Заместители, смещающие электронную плотность по цепи d-связей в свою сторону, проявляют отрицательный индуктивный эффект (-I). Это так называемые электрон-акцепторные заместители (ЭА-заместители), напр., -OH, -NH2, -F, -Cl, -Br и др. Заместители, смещающие электронную плотность от себя, повышая ее в цепи, проявляют положительный индуктивный эффект (+I). Это электроно-донорные заместители (ЭД-заместители), напр., -CH3, -C2H5, -Na, -K и др. В молекулах органических соединений наряду с индуктивным эффектом заместителей также проявляется мезомерный эффект, который действует в сопряженных системах.

Сопряженными называют системы с чередующимися простыми и двойными связями (...—С=С—С=С—...), или системы, в которых у соседнего с двойной связью гетероатома имеется pz-орбиталь с неподеленной парой электронов (эфф2). Сопряженные системы делятся на открытые и замкнутые.

Открытые сопряженные системы.

Примером может служить бутадиен-1,3 СН2=СН-СН=СН2. Рассмотрим на этом примере возникновение p,p-сопряжения. (эфф3)

В молекуле бутадиена-1,3 атомы углерода находятся в состоянии sp2-гибридизации. (эфф4)

Атомы углерода, соединяясь между собой d-связями, образуют плоский d-скелет молекулы.

Pz атомные орбитали каждого атома располагаются перпендикулярно плоскости d-скелета и параллельно друг другу, что создает условия для их взаимного перекрывания. (эфф5)

Происходит перекрывание pz-орбиталей атомов С1 и С2, С2 и С3, С3 и С4. В результате него возникает единое сопряженное p-электронное облако, равномерно распределенное (или делокализованное) по всей системе. Так возникает p,p-сопряжение при взаимодействии pz-орбиталей с p-связью.

P,p-сопряжение возникает при взаимодействии pz-орбитали гетероатома, имеющего не поделенную пару электронов, с p-связью. Рассмотрим на примере дивинилового эфира. (эфф6)

Замкнутые сопряженные системы.

При определенных условиях в циклических молекулах могут возникать замкнутые сопряженные системы, напр., в молекуле бензола С6Н6. В молекуле бензола атомы углерода находятся в состоянии sp2-гибридизации. Система связей С-С и С-Н образует плоский d-скелет молекулы. [бензольный цикл, (эфф7)]

PZ-орбитали каждого атома располагаются перпендикулярно плоскости d-скелета и параллельно друг другу, что создает условия для их взаимного перекрывания. (эфф8)

В результате взаимного перекрывания pz-орбиталей атомов углерода возникает единое замкнутое сопряженное p-электронное облако, делокализованное на всех атомах цикла. Такая система называется ароматической.

Хюккель установил критерии ароматичности (1931):

1. Молекула имеет циклическое строение.

2. Все атомы цикла, находясь в состоянии sp2-гибридизации, соединяясь между собой d-связями, образуют плоский d-скелет молекулы. PZ-орбитали каждого атома располагаются перпендикулярно плоскости d-скелета и параллельно друг другу, что создает условия для их взаимного перекрывания.

3. В результате взаимного перекрывания pz-орбиталей возникает единое замкнутое сопряжение - p-электронное облако, делокализованное на всех атомах цикла и содержащее в соответствии с правилом Хюккеля (4n+2) p-электрона, где n - любое натуральное число (n=0, 1, 2, 3,...). Для бензола n=1, отсюда ароматическая система бензола содержит (4×1+2)=6 p-электронов, или ароматический секстет.

Критериям ароматичности также отвечают конденсированные бензоидные соединения, напр., нафталин (эфф9), природные гетероциклические соединения, напр., пиррол (эфф10), имидазол (эфф11) и другие.

Рассмотрим критерии ароматичности на примере имидазола [рисуем имидазол со стрелками, (эфф12)] (1 – пиррольный атом азота; 2 – пиридиновый атом азота).

Молекула имидазола отвечает всем трем критериям ароматичности (см. выше). Для имидазола n=1, следовательно ароматическая система имидазола содержит (4×1 +2)=6 p-электронов. В ароматический секстет имидазола поставляют по одному электрону три атома углерода и пиридиновый атом азота. Пиррольный атом азота поставляет два электрона. [цикл имидазола с π-орбиталями, (эфф13)]

Пиррольный атом азота находится в состоянии sp2-гибридизации. Три гибридные орбитали пиррольного азота участвуют в образовании d-связей с соседними атомами углерода и водорода. Четвертая негибридная pz-орбиталь участвует в образовании ароматического секстета, поставляя в него неподеленную пару электронов (эфф14).

Две гибридные атомные орбитали пиридинового атома азота участвуют в образовании d-связей с соседними атомами углерода. Третья гибридная атомная орбиталь с неподеленной парой электронов лежит в плоскости d-скелета, обуславливая свойства пиридинового атома азота как основания, т.е. способность присоединять протон Н+.

Четвертая негибридная pz-атомная орбиталь участвует в образовании ароматического секстета (эфф15), поставляя в него один электрон. В молекулах имидазола 6-электронное p-облако делокализованно на пяти атомах цикла (эфф16). Такая система называется p-избыточной системой.

В молекуле другого гетероциклического соединения - пиридина - электронная плотность 6-электронного p-облака смещена к более электроотрицательному атому азота. Такая система называется p-недостаточной.

Образование сопряженной системы приводит к выравниванию длин связей, равномерному распределению электронной плотности в молекуле, снижению энергетического уровня системы. Все это способствует стабилизации молекулы. О термодинамической устойчивости сопряженной системы судят по величине энергии сопряжения, которая рассчитывается по формуле:

DE=EH-EC, где:

DE - энергия сопряжения;

EН - полная p-электронная энергия несопряженной системы;

EС - полная p-электронная энергия сопряженной системы.

[график, (эфф18)]

Энергия сопряжения равна энергии стабилизации — это та энергия, которая выделяется при образовании сопряженной системы из несопряженной системы. В открытых сопряженных системах чем длиннее цепь сопряжения, тем выше энергия сопряжения и стабильнее система. Замкнутые сопряженные системы более стабильны, чем открытые. Так, DEC6H6=150,6 кДж×моль-1, DECH2=CH-CH=CH2=15 кДж×моль-1.

Мезомерный эффект - это передача электронного влияния заместителя по системе сопряженных связей в сопряженной системе.

Мезомерный эффект обозначается М или графически стрелкой, начало которой указывает, какие p- или p-электроны смещаются, а конец - связь или атом, к которому смещается электронная плотность. Мезомерный эффект заместителей проявляется как в открытых, так и замкнутых сопряженных системах.

Мезомерный эффект в открытых сопряженных системах

[пентадиен-2,4-аль с эффектами, (эфф19)] Альдегидная группа и другие заместители, содержащие кратные связи (напр., -СООН, -SO3H2, -NO2), вступая в p,p-сопряжение с сопряженной системой, оттягивают на себя электронную плотность, понижая ее в сопряженной системе. Они проявляют отрицательный мезомерный эффект (-М), это электронно-акцепторные (ЭА) заместители.

В молекуле этого альдегида также проявляется индуктивный эффект заместителя, который направлен к более электроотрицательному атому кислорода.

Для прогнозирования свойств органических соединений необходимо учитывать результирующее влияние электронных эффектов заместителей. Для этого дают характеристику заместителю с учетом проявляемых эффектов.

Для альдегидной группы: -СНО (-I, -M; ЭА). Под влиянием ЭА-заместителя в молекуле пентадиен-2,4-аля электронная плотность смещается к заместителю и понижена в углеродной цепи.

Мезомерный эффект в замкнутой сопряженной системе.

Рассмотрим на примере фенола С6Н5ОН [фенол с эффектами, (эфф20)].

Гидроксогруппа -:ОН, -:NH2 и другие заместители, содержащие неподеленную пару электронов у гетероатома, вступая в p,p-сопряжение с сопряженной системой, поставляют в нее неподеленную пару электронов, повышая в ней электронную плотность. Они проявляют положительный мезомерный эффект (+М). Это ЭД-заместители.

-:OH (-I, +M; +M>>-I; ЭД)

Под влиянием ЭД-заместителя (гидроксогруппы) в молекуле фенола в положениях 2,4,6 (орто- и пара-) появляются реакционные центры, несущие частично отрицательные заряды - нуклеофильные реакционные центры. Заместитель гидроксогруппа относится к ориентантам первого рода, т.к. направляет последующее замещение в орто- и пара-положения.

Рассмотрим молекулу бензойной кислоты [бензойная к-та с эффектами, (эфф21)].

-СООН (-I, -M; ЭА)

Под влиянием ЭА-заместителя в молекуле бензойной кислоты в мета-положении появляются реакционные нуклеофильные центры. Заместитель СООН-группа относится к ориентантам второго рода, т.к. направляет последующие заместители в мета-положение.

В молекулах ряда органических соединений индуктивный и мезомерный эффекты заместителей действуют одновременно. При этом они могут быть либо однонаправленными, либо в противоположно направлеными. В большинстве случаев мезомерный эффект преобладает над индуктивным. У галогенов преобладающим является индуктивный эффект. Учитывая перераспределение электронной плотности, происходящее в молекулах органических соединений под влиянием электронных эффектов заместителей, могут прогнозироваться свойства органических соединений.

Стереоизомерия

Изомерия – это явление, при котором вещества имеют одинаковый количественный, качественный состав, молекулярную массу, но отличаются химическим строением или пространственным расположением атомов или групп атомов в молекуле.

Изомерия делится на 2 вида: структурную и пространственную.

Структурная изомерия подразделяется:

1) изомерия углеродной цепи. Пр.: CH3–CH2–CH2–CH3 - н-бутан и изобутан (стер1);

2) изомерия положения кратных связей. Пр.: CH2═CH–CH2–CH2–CH3 – пентен-1 и CH3–СH═CH–CH2–CH3 – пентен-2

3) изомерия положения функциональных групп. Пр.: CH3–CH2–CH2–OH – пропанол-1 и пропанол-2 (стер2);

4) межклассовая изомерия. Это вид изомерии, при котором одной и той же эмпирической формуле соответствуют представители разных классов органических соединений. Пр.: эмпирической формуле С2H6O соответствуют CH3–CH2–OH - этанол и CH3–O–CH3 - диметиловый эфир;

Пространственная изомерия или стереоизомерия – это вид изомерии, при котором изомеры или стереоизомеры отличаются друг от друга пространственным расположением атомов или групп атомов в молекуле.

Стереоизомерия делится на следующие виды:

1) конформационная;

2) энантиомерия (оптическая изомерия);

3) диастереомерия (геометрическая изомерия). Она, в свою очередь, подразделяется на:

а) δ (сигма)-диастереомерию;

б) π(пи)-диастереомерию.

Энантиомерия возможна у любых органических соединений, содержащих асимметричный атом углерода.

Асимметричным называется атом углерода, соединенный с четырьмя различными группировками, например α-углеродный атом в молекуле молочной кислоты (стер3). Асимметричный атом углерода обозначается звездочкой (*).

Молекулы веществ, содержащих асимметричный атом углерода, называется хиральными, а асимметричный атом углерода называется хиральным центром.

Энантиомерия – это вид изомерии, при котором стереоизомеры, называемые энантиомерами относятся между собой как предмет и несовместимое с ним зеркальное изображение.

Пр.: пара энантиомеров молочной кислоты: (стер4)

Для обозначения внешней конфигурации энантиомеров вводится понятие о D и L – формах, т.е. устанавливают принадлежность каждого энантиомера к определенному D или L стереохимическому ряду.

В D-формах заместитель, соединенный с хиральным центром, записывается справа по отношению к углеродной цепи, а в L-форме – слева по отношению к углеродной цепи.

Энантиомеры обладают оптической активностью, они способны вращать плоскость поляризации света. Оптическая активность энантиомеров определяется на приборе поляриметре, в котором луч света, пройдя через специальную призму, колеблется к одной плоскости, становится плоскополяризованным. Энантиомеры способны отклонять такой луч либо влево, либо вправо [отклонения, (стер5)].

У энантиомеров угол вращения плоскости поляризации света одинаковый, но направление вращения противоположное. Один энантиомер – левовращающий (знак «-»), а другой – правовращающий (знак «+»). Напр.: у молочной кислоты D(-), α=-2,6°; L(+), α=+2,6° (при 22°С в 25% растворе).

Знак вращения в плоскости поляризации света не связан с принадлежностью к D или L ряду, он определяется экспериментально. Энантиомеры сходны между собой по физическим и химическим свойствам, но отличаются по оптическим свойствам. Они являются оптическими антиподами. Смесь равных количеств энантиомеров называется рацемат. Он не обладает оптической активностью. Многие биологически важные соединения содержат 2 и более центра хиральности. Количества стереоизомеров для них рассчитывается по формуле Z=2n, где n - число хиральных центров. Пр.: 2,3,4-тригидроксобутаналь (стер6), n=2, Z=22=4, следовательно этот альдегид образует 4 стереоизомера: (стер7,8)

Пары 1 и 3, 1 и 4, 2 и 3, 2 и 4 не являются энантиомерами. У них проявляется другой вид стереоизомерии – диастереомерия.

Диастереомеры – изомеры, которые не являются энантиомерами.

У вышеперечисленных пар стереоизомеров проявляется d-диастереомерия, т.к. заместители соединены с хиральными центрами d–связями. Стереоизомер, у которого заместители, соединенные с хиральными центрами, располагаютя по одну сторону от углеродной цепи называется эритроформа, а по разные стороны – треоформа.

У d-диастереомеров конфигурация одного хирального центра одинаковая, а другого – противоположная.

Пара сигма диастереомеров. [эритро-форма, трео-форма, (стер9)]

Понятие энантиомерии и d-диастереомерии взаимоисключающие. Если пара стереоизомеров является энантиомерами, то они не будут d-диастереомерами и наоборот.

p–диастереомерия – это вид стереоизомерии, при котором стереоизомеры отличаются друг от друга пространственным расположением одинаковых заместителей относительно плоскости p–связи. Пр.: [бутендиовая к-та, ее цис- и транс-изомеры, (стер10)]

Транс-p-диастереомеры более стабильны и поэтому более распространены в природе. В частности фумаровая кислота является в организме промежуточным продуктом обмена углеводов в анаэробных условиях.

Кислотные свойства органических соединений

Кислотный центр – это элемент и связанный с ним атом водорода. На кислотные свойства органических соединений оказывает влияние стабильность аниона,… 1. Природа элемента в кислотном центре. а) Электроотрицательность элементов в кислотном центре.

Конформации циклических углеводородов

а) малые (3-4 атома углерода); б) обычные (5-7 атомов углерода); в) средние (8-10 атомов углерода);

Восстанавливающие дисахариды

Важнейшие из восстанавливающих дисахаридов – мальтоза и лактоза. Мальтоза (солодовый сахар) представляет собой замещенную D-глюкозу, содержащую… [a,D-глюкопираноза+ D-глюкоза= мальтоза (оксикарбонильная форма)+ вода= мальтоза (цикл. форма), (олиг1)]

Физиологически активные гетероциклические соединения, их строение и биологическая роль

Многочисленные гетероциклические соединения играют важную роль в биологии, медицине и сельском хозяйстве. Они входят в состав важнейших природных… Классификация гетероциклических соединений Классификация гетероциклических соединений основана на двух признаках:

Производные пиррола

(гет3) В организме триптофан претерпевает разнообразные метаболические превращения с образованием ряда соединений, участвующих в процессах… При декарбоксилировании триптофана образуется триптамин. Триптамин при… Четыре пиррольных кольца образуют циклическую сопряженную систему, называемую порфином, которая входит в состав…

Состав гемоглобина

Состав ГЕМА: 1. четыре пиррольных цикла; 2. четыре метиновых мостика (–СН=);

III группа: 6-членные гетероциклы с 1 гетероатомом азота

(гет11) Никотиновая кислота и ее амид (никотинамид) получили известность как две формы витамина РР, применяющегося в медицине для лечения пеллагры.… IV группа: 6-членные гетероциклы с 2 гетероатомами Представителем этой группы гетероциклических соединений является пиримидин. (гет12) Производные пиримидина…

Фенолы

Фенолы - это гидроксисоединения, в молекулах которых гидроксильные группы соединяются с атомомами углерода бензольного кольца.

Фенолы классифицируют по количеству гидроксильных групп на:

1. одноатомные, содержащие одну гидроксильную группу, напр., фенол;

2. многоатомные, содержащие 2 или более гидр. групп. Многоатомные: пирокатехин в организме является структурным компонентом биологически активных соединений; резорцин используется для лечения кожных и инфекционных соединений; гидрохинон участвует в о-в процессах. [пирокатехин, резорцин, гидрохинон, (гидр12,13,14)]

Химические свойства фенолов

- Реакции окисления фенолов.

[гидрохинон в хинон, (гидр15)]

Система хинон-гидрохинон в организме участвует в биологическом окислении.

- Реакции электрофильного замещения (SE).

[субстрат+ реагент-электрофил=продукт+ уходящая группа-электрофуг, (гидр16)]

Рассмотрим механизм реакции электрофильного замещения в ароматическом ряду на примере нитрования бензола.

1. образование реагента-электрофила: HNO3+2H2SO4®H3O++NO2++2HSO4-

2. взаимодействие реагента-электрофила с бензолом. (гидр17)

Образование p-комплекса реагента-электрофила и бензольного кольца происходит за счет пары электронов сопряженной системы. Преобразование p-комплекса в s-комплекс сопровождается нарушением ароматичности и переходом атома углерода в состояние sp3 гибридизации. При отщеплении протона от s-комплекса ароматичность восстанавливается и образуется производное бензола – нитробензол. К реакциям электрофильного замещения относятся реакции: нитрования, сульфирования фенола. Рассмотрим сульфирование фенола:

[фенол+ 3 серной к-ты= 2,4,6-трисульфофенол+ 3воды, (гидр18)]

Карбонильные соединения

В зависимости от характера связанных заместителей карбонильные соединения делятся на классы: 1. альдегиды [общая формула, (гидр19)] 2. кетоны [общая формула, (гидр20)]

Альдегиды

В молекуле альдегидов выделяют следующие реакционные центры: 1. основной нуклеофильный центр; 2. электрофильный центр;

Карбоновые кислоты

[COOH, (гидр30)] Карбоновые кислоты классифицируют по количеству карбоксильных групп на: 1. одноосновные или монокарбоновые кислоты, содержащую одну карбоксильную группу:

Химические свойства карбоновых кислот

[карб. к-та+вода= ацилат-ион+ H3O+, (гидр47)] II. Реакции галогенирования (реакции в СН-кислотном центре) [пропионовая к-та+ Br2=α-бромпропионовая +HBr, (гидр48)]

Медико-биологическое значение карбоновых кислот

Внутрь салициловая кислота не применяется, т.к. обладает довольно выраженными кислотными свойствами (рКа=2,98). При приеме внутрь она может вызвать… 1. Салицилат натрия [2салициловой к-та+ Na2CO3= 2салицилата Na+ вода+ угл.… Применяется внутрь как жаропонижающее и противовоспалительное средство.

Биологические функции углеводов

2. Пластическая – является обязательным компонентом внутриклеточных структур и мембран растительного и животного происхождения. Основную субстанцию… 3. Синтетическая – участвуют в синтезе нуклеиновых кислот, входят в состав… 4. Защитная – участвуют в поддержании иммунитета организма. Пр.: тиреотропный гормон контролирует функцию и развитие…

Моносахариды

Относятся к полигидроксикарбонильным соединениям.

Классификация:

1. альдозы – полигидроксиальдегиды;

2. кетозы – полигедроксикетоны.

По числу атомов углерода в цепи:

1. триозы;

2. тетрозы;

3. пентозы;

4. гексозы.

С учетом 2-х признаков классификации к биологически важным относятся следующие классы:

Альдогексозы

Глюкоза (виноградный сахар) (угл1) Энантиомером D-ряда углеводов соответствует энантиомер L-ряда с противоположной конфигурацией всех центров хиральности. Если изомеры углеводов различаются конфигурацией только одного центра хиральности, то они называются эпимеры.

Глюкоза содержится практически во всех растительных организмах. В свободном состоянии регулирует осмотическое давление крови. При повышении концентрации глюкозы возникает явление гипергликемии.

Галактоза (угл2). Является эпимером глюкозы в четвертом углеродном звене.

D-галактоза входит в состав лактозы и гликолипидов. В печени она легко изомеризуется в глюкозу.

Манноза (угл3). Является эпимером глюкозы во втором углеродном звене.

Альдопентозы.

1. D-рибоза (угл4)

2. D-ксилоза (угл5)

3. Производным рибозы является дезоксисахар – D-2-дезокси-D-рибоза (дезоксирибоза) (угл6)

Альдопентозы являются структурными компонентами нуклеиновых кислот. Рибоза входит в состав РНК, дезоксирибоза – ДНК.

Кетогексозы.

D-фруктоза (угл7) – содержится во фруктах, мёде, входит в состав сахарозы, в организме легко изомеризуется в глюкозу.

Циклические формы.

5-членный цикл (фуранозный) 6-членный цикл (пиранозный) (угл8)

A,D-рибопираноза

B,D-рибопираноза

A,D-рибофураноза

B,D-рибопираноза

(угл11)

Для других моносахаридов образование таутомерных форм см. по учебнику стр 386,388,389.

Химические свойства моносахаридов.

1. Свойства многоатомных спиртов проявляются в качественной реакции взаимодействия моносахаридов со свежеосажденным гидроксидом меди (II) - Сu(OH)2.… 2. Свойства альдегидов проявляются в качественной реакции взаимодействия… 3. Свойства спиртов проявляются в реакции этерификации ОН-группы под действием кислородсодержащих кислот.…

Производные моносахаридов.

В водном растворе он находится в циклической форме 2-амино-2-дезокси-D-глюкопираноза. Аминогруппа часто ацелирована остатком уксусной кислоты, при этом образуется… 2-ацетамидо-2-дезокси-D-глюкозамин (угл18)

Сложные углеводы.

Полисахариды имеют большую молекулярную массу и характеризуются высоким уровнем структурной организации макромолекулы. Полисахаридные цепи могут быть разветвлёнными и неразветвлёнными, то есть… По составу полисахариды делят на

Кислотно-основные свойства a-АК

В зависимости от рН среды может преобладать тот или иной заряд. В сильно кислых средах: (рН=1-2) формируется катионная форма АК: (АК4) В сильнощелочной среде: (рН=13-14) преобладает анионная форма АК: (АК5)

Химические свойства АК

1. Как амфолиты АК образуют соли при взаимодействии с кислотами и основаниями. [аланин с NaOH= натриевая соль аланина; с HCl= солянокислый аланин,… 2. Реакция декарбоксилирования АК - это ферментативный процесс образования… [гистидин= гистамин+ угл. газ, (АК8)] Гистамин является медиатором аллергических реакции организма. При…

Строение нуклеотидов

Пр.: образование аденозина из аденина (пуриновое основание) и рибозы (НК1) Основой названия гликозидов является тривиальное название соответствующего… В РНК входят следующие нуклеотиды: аденозин, гуанозин, цитидин, уридин. Их азотистые основания: аденин, гуанин,…

Строение мононуклеотидов

Пр. рассмотрим образование 5’-цитидиловой кислоты (НК2) Нуклеотид имеет 2 названия: 1. как монофосфат соответствующего нуклеозида: цитидин-5’-фосфат (СМР);

Строение нуклеотидов РНК

5’-адениловая к-та (НК4); 5’-цитидиловая к-та (НК5); 5’-уридиловая к-та (НК6);

Структура нуклеиновых кислот

Впервые структура ДНК была расшифрована в 1953г. Уотсоном и Криком. ДНК включает несколько уровней структурной оргенизации. Днк имеет первичную,… Первичная структура - это последовательность мононуклеотидов, соединенных… Полинуклеотидная цепь может включать сотни мононуклеотидных звеньев, соединенных (3'®5') фосфодиэфирными связями.…

Структура РНК

В зависимости от функций, места нахождения и состава РНК делятся на 3 основные вида: 1. и-РНК (информационная или матричная) 5-10% от всех РНК в клетке; 2. р-РНК (рибосомная) 80-90%

Биологическая роль и функции жиров

2. участвуют в регуляции деятельности гормонов, ферментов, процессах биологического окисления, транспорта веществ. Примерно 50% массы мозга… 3. хорошие растворители ряда биологически активных веществ: витамины А, Д, Е,… 4. энергетическая - при окислении 1г жира выделяется 37,7-39,8 кДж энергии. Скандий - 29,5 кДж;

Химические свойства триацилглицеринов

Подвергаются гидролизу по трем типам:

1. кислотный (обратимый!) [3-олеинстеарин+3 воды= глицерин+ 3 олеиновой к-ты, (лип3)]

2. ферментативный - протекает аналогично кислотному, но в организме и с участие фермента липазы до глицерина и необходимой кислоты. В организме гидролиз - первая стадия утилизации и метаболизма пищевых жиров.

3. щелочной (необратимый!) [1-олео-2-пальмитостеарин+ 3 NaOH= глицерин+ олеат Na+ пальмитат Na+ стеарат Na, (лип4)]

Сложные липиды

главный компонент клеточной мембраны. Некоторые представители фосфолипидов. 1. Фосфатидилэтаноламин. (лип6)

– Конец работы –

Используемые теги: Электронные, эффекты, заместителей0.06

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электронные эффекты заместителей

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Устройства содержат сотни реле, электронных ламп, полупроводников и электронных элементов
Эти устройства широко используются в технике автоматического управления в... Устройства содержат сотни реле электронных ламп полупроводников и электронных элементов...

Электронное управление двигателем. Принцип работы электронной системы управления зажиганием
На сайте allrefs.net читайте: "Электронное управление двигателем. Принцип работы электронной системы управления зажиганием"

ИВЭП ДЛЯ ПИТАНИЯ ЭЛЕКТРОННОЙ АППАРАТУРЫ. Основные требования к ИВЭП для питания электронной аппаратуры
В первой части данного учебного пособия рассматриваются источники питания электронной аппаратуры в которых для улучшения технико экономических... В... где W число витков первичной обмотки ее потокосцепление а u напряжение на ней...

Эффект Комптона. Опыт Боте. Давление света. Эффект Доплера
Давление света Плоский световой поток интенсивности Iосвещает половину зеркальной сферической поверхности радиуса R Найдем с помощью... Сначала найдем силу dF действующую на элементарное кольцо dS рис в... где p c...

Был бы эффект, а вывеска засветится. Использование физических эффектов в конструкциях наружной рекламы
Идеально, если он задействует ресурсы, уже имеющиеся в системе. При рекламе каких товаров можно использовать лед со столь необычным свойством, Вы… Рис. 1. 1 - источник света, 2 - диафрагма, 3 - призма, 4 - экран.Почему бы не… Но в тот момент, когда пучок белого света падает на вершину призмы, лучи не проходят сквозь призму. Это значит, что…

Эффект Пигу в кейнсианской теории. Взаимодействие с различными функциями потребления. Ограничения эффекта Пигу
Он утверждал, что даже в условиях конкурентной экономики может устанавливаться равновесие при неполной занятости. Дебаты породили множество контраргументов. Первое весомое возражение Кейнсу было выражено в 1943 году и принадлежало английскому экономисту Артуру Пигу Arthur…

Лекция №5. Электронная коммерция 1. Электронная коммерция. Основные понятия
ПЛАН... Электронная коммерция Основные понятия... Категории электронной коммерции История развития электронной коммерции...

Анализ методов разработки электронного учебника
На сайте allrefs.net читайте: "Анализ методов разработки электронного учебника"

Описание программного продукта электронного учебника
На сайте allrefs.net читайте: "Описание программного продукта электронного учебника"

Описание Электронного учебника
На сайте allrefs.net читайте: "Описание Электронного учебника"

0.035
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам