МИКРОСХЕМЫ И СХЕМЫ ИХ ВКЛЮЧЕНИЯ

 

В настоящее время операционные усилители (ОУ) получи­ли наиболее широкое распространение среди аналоговых интеграль­ных схем. Это обусловлено возможностью реализации на их основе самых различных линейных и нелинейных аналоговых и аналого-цифровых устройств. Различные способы преобразования аналоговых сигналов выдвигают самые разнообразные требования к ОУ. Удов­летворить все эти требования в ОУ одного типа практически невоз­можно. По этой причине промышленностью выпускаются ОУ несколь­ких типов, каждый из которых удовлетворяет ограниченному числу .требований. Все вместе они перекрывают широкий диапазон требо­ваний.

Операционные усилители строятся на основе трех- или двухкас-кадных структурных схем. Трехкаскадная схема содержит каскады входного дифференциального усилителя, усилителя напряжения и усилителя амплитуды сигнала, объединяющего схемы сдвига уровня и формирования выходного сигнала. Выходные эмиттерные повтори-тели, осуществляющие переход к низкоомной нагрузке, в формирова­нии коэффициента усиления- ОУ не участвуют. В двухкаскадных ОУ входной каскад объединяет функции дифференциального усилителя и усилителя напряжения.

Большое количество различных типов ОУ, выпускаемых серийно, можно разбить на две большие группы по их элементной базе. Пер­вая из этих групп, в которую входят в основном ОУ первого поко­ления, характеризуется использованием главным образом транзисто­ров типа n-р-n и большого количества резисторов, в то время как интегральные ОУ второй группы отличаются применением компле­ментарных структур (совокупностью транзисторов типов n-р-n и р-n-р) и резким уменьшением количества резисторов. К первой груп­пе относятся трехкаскадные ОУ типа К153УД1, а ко второй — двух-каскадные типа К140УД7. Параметры ОУ второй группы значитель­но лучше. Так, у ОУ типа К140УД7 более широкий диапазон измене­ния входного дифференциального напряжения, простая схема ком­пенсации смещения, встроенный МОП-конденсатор емкостью около 30 пФ, обеспечивающий устойчивость ОУ для любой конфигурации и параметров цепи обратной связи (ОС). Кроме того, предусмотрена защита ОУ от коротких замыканий по выходу.

Возможности использования современных ОУ можно расширить еще больше, если создать условия для изменения некоторых из его параметров под воздействием внешних управляющих сигналов. Опе­рационные усилители такого типа обычно называют программируе­мыми. Программируемым ОУ является микросхема К.140УД12.

Основные метрологические характеристики ОУ определяются па­раметрами его входного дифференциального каскада. Простейшая схема этого каскада представлена на рис. 1.1. Вольт-амперную ха­рактеристику эмиттерного диода транзистора с достаточной степенью точности можно описать выражением вида

Iэ=Iэвоexp UБЭ/Фт. (1)

где фт — температурный потенциал (для Т=300 К фт = 26 мВ); IЭБО — обратный ток эмиттера; UБЭ — управляющее переходом ба­за — эмиттер напряжение. Это выражение справедливо при UБЭ >фт. По формуле (1) можно вычислить практически все входные пара­метры дифференциального каскада. Так, входное дифференциальное сопротивление ОУ равно Rвх.д = 2h11Б, а коэффициент усиления на­пряжения

Ky.u = UK1/UD = UK2/UD, где UD = Ul—U2. (2)

Таким образом, коэффициент усиления напряжения практически ра-. вен половине коэффициента усиления каскада с общим эмиттером (ОЭ), т.е. выражение (2) можно привести к виду Kи.и = h21ЕRк/2h11Е. Сюда входит входное сопротивление h11В каскада с общим эмитте­ром, которое зависит от эмиттерного тока транзистора или от номи­нала источника тока дифференциального каскада I0. Если коэффици­ент передачи тока транзистора h21Е>1, то h21Е=h21Ефт/Iэ = 2h21Ефт/I0. Тогда получим Rвх.д = 4h21Ефт/Iо иKу.и=RкIо/4фт.Эти выражения показывают, что регулировкой источника тока I0 вход­ного дифференциального каскада можно изменять такие параметры ОУ, как коэффициент усиления напряжения и -входное дифферен­циальное сопротивление.

На рис. 1.2 представлены графические зависимости Rвх.д=f(Iо) и Kум=f(I0) для h21Е=100 и Rк=3,5 кОм. Однако эмиттерный ток входного каскада I0 влияет не только на эти параметры, но и на такие не менее важные характеристики, как входной ток ОУ, ско­рость .нарастания выходного напряжения я потребляемая мощность.

Широко распространенной разновидностью ,ОУ являются так называемые ОУ с переменной крутизной, наиболее характерным параметром которых является управляемая проводимость. Выход­ной каскад усилителя такого типа практически представляет собой источник тока. Программируемый источник тока, который исполь­зуется для питания входного дифференциального каскада и управ­ления параметрами ОУ, реализован по схеме «токового зеркала».