МАЛОМОЩНЫЕ ТРАНЗИСТОРНЫЕ СТАБИЛИЗАТОРЫ

 

Генераторы тока. Генератор тока (рис, 16.11, а) построен на основе принципа стабилизации базового напряжения в транзи­сторе. Напряжение на резисторе R1 при изменении Е будет опреде­ляться опорным напряжением стабилитрона. Зависимость выходного тока от Е приведена на графике. Коэффициент стабилизации ДE/ДI=26.

Значительно более высокий коэффициент стабилизации у дру­гого генератора тока (рис. 16.11, б) — более 57. Коэффициент ста­билизации возрастает, если увеличить ток, протекающий через ста­билитроны. Следует иметь в виду, что при плавной установке на­пряжения Е схема может оказаться в закрытом состоянии. Для ее запуска служит резистор R3.

Стабилизатор напряжения с ОС. В основу стабилизатора на­пряжения (рис. 16.12) положен стабилизатор тока, работающий на стабилитрон. Коллекторный ток транзистора VT2 протекает через стабилитрон VD4 и сопротивление нагрузки. Значение этого тока определяется резистором R4 и опорным напряжением стабилитрона VD2. Диод VD3 служит для термостабилизации. Поскольку ток потребляемый внешней нагрузкой (Rн1 и RН2), может меняться вы­ходное напряжение стабилизатора будет нестабильным. Для стаби­лизации этого напряжения часть тока нагрузки протекает через транзистор VTL Этот ток создает падение напряжения на рези­сторе R2, которое меняет эмиттерный ток транзистора VT2. В ре­зультате ток, протекающий через стабилитрон VD4, остается посто­янным. Таким образом отслеживаются изменения внешней на­грузки.

Транзисторная модель низковольтного стабилитрона. Стабилит­рон, собранный и.а двух транзисторах разных типов проводимости (рис. L6.13), позволяет получить стабилитрон с опорным напряже­нием 0,9 В. Внутреннее сопротивление эквивалентного стабилитрона менее 10 Ом. Максимально допустимый ток составляет 30 мА. Этот параметр определяется током транзисторов. Если применить более мощные транзисторы, то ток можно увеличить до сотен миллиам­пер. Применение германиевых транзисторов вместо кремниевых снижает опорное напряжение на 0,4 В.