Математическое моделирование радиолиза теплоносителя

Математическое моделирование радиолиза теплоносителя. При эксплуатации ядерных энергетических установок возникают проблемы, решение которых оказывается возможным только после количественного определения изменений в составе теплоносителя, происходящих в результате воздействия на него ионизирующих излучений.

Экспериментальное определение таких изменений в условиях работы реального реактора исключительно сложно и трудоемко, что влечет за собой недостаточную достоверность получаемых результатов из-за малого числа повторяющихся экспериментов.

В некоторых случаях провести в полном объеме эксперименты вообще нельзя, так как в ходе их могут оказаться нарушенными условия безопасной эксплуатации реактора. Лабораторное прямое моделирование эксперименты на образцах также далеко не всегда выполнимо, поскольку в лаборатории практически невозможно подвергнуть образцы теплоносителя одновременному воздействию тех факторов, которые на них действуют в реакторных системах - смешанное нейтроны, гамма-кванты, заряженные частицы излучение, высокие температура и давление, наличие интенсивного массопереноса.

В связи со сказанным весьма важное значение приобретают развиваемые в настоящее время математические модели физических и физико-химических процессов, протекающих в реакторных системах, и методы прогнозирования с использованием этих моделей и высокопроизводительной вычислительной техники.

Математическое моделирование радиолиза водного теплоносителя реакторных контуров сегодня является достаточно широко применяемым средством оценки водно-химических условий в контуре и предсказания коррозионного поведения контурных материалов.

Разработка моделей велась многими исследователями 5 в направлении все более полного учета факторов, влияющих на радиолиз воды в реальных условиях контуров ЯЭУ. 1.3.1 Математическая модель Математическая модель обычно состоит из нескольких блоков.

Центральным блоком модели является адекватное описание физического смысла явления в нашем случае радиолиза теплоносителя в виде набора уравнений химических реакций, баланса, кинетики, переноса и т.д. Параметрами этих уравнений служат как фундаментальные постоянные, характерные для самого явления например, энергии активации и константы скорости химических реакций, термодинамические константы теплоносителя и т. д так и условия, в которых явление протекает температура, гидродинамические условия, свойства излучений и потоков частиц. Набор этих параметров составляет второй блок модели.

Третий блок - математический аппарат и программные продукты, позволяющие рассчитывать динамику процесса в системе и предсказывать его реакцию на заданное изменение условий. При построении модели главным является доказательство ее адекватности, т. е. способности описывать с заданной точностью при принятых допущениях весь имеющийся к моменту построения модели экспериментальный материал, относящийся к рассматриваемому явлению и полученный как в реакторных, так и в лабораторных экспериментах.

Такое доказательство проводится методами математической статистики путем сравнения расчетных величин с экспериментальными.

В процессе доказательства проводится уточнение модели. В качестве примера можно привести разработанную в лаборатории ВНИПИЭТ математическую модель радиолиза водного теплоносителя в условиях реального контура, включающую в себя данные по гетерогенному катализу разложения перекиси водорода на медных сплавах 3, 10 . Математическое моделирование радиолиза водного теплоносителя реакторных контуров сегодня является достаточно широко применяемым средством оценки водно-химических условий в контуре и предсказания коррозионного поведения контурных материалов.

Разработка моделей велась многими исследователями 1, 4, 5, 6, 10 в направлении все более полного учета факторов, влияющих на радиолиз воды в реальных условиях контуров ЯЭУ. Одним из таких факторов является наличие химических примесей в реакторной воде, которые либо вводятся в нее специально для корректировки водно-химического режима, либо являются продуктом коррозии материалов контура.

К последним относятся, прежде всего, ионы металлов, являющихся конструкционными материалами контура нержавеющая сталь, медные сплавы и пр Участвуя в цепи химических превращений, эти ионы могут существенно повлиять на выход конечных продуктов радиолиза Н2, О2, Н2О2 и, тем самым, на коррозионные свойства теплоносителя. Это, в частности, относится к ионам Cu2 , которые, по некоторым данным, усиливают радиолитическое разложение воды. С другой стороны, ионы Cu2 могут выступать в качестве катализатора рекомбинации Н2 и О2 согласно механизму 1 Cu2 Н2CuH H CuH Cu2 2Cu H Cu O2Cu2 O2- что, наоборот, должно тормозить радиолиз воды. Далее, как ионы Cu2 , так и ионы Fe3 являются катализаторами разложения одного из продуктов радиолиза Н2О2, что может существенно изменить ее радиолитический выход.

Наконец, известно каталитическое действие на разложение Н2О2 поверхностей металлов в частности меди и нержавеющей стали 3, 4 , поэтому рассмотрение радиолиза воды в реальных контурах должно учитывать и этот фактор.

Попытка комплексного учета перечисленных факторов привела к созданию математической модели радиолиза водного теплоносителя в условиях реального контура. 1.3.2 Реакции, включенные в математическую модель В основу модели положен механизм радиолиза чистой воды и разбавленных растворов Н2, О2, Н2О2, предложенный в 10 . Он представлен реакциями 1-54 в таблице 1.2, где даны также значения констант скорости t 25oC и энергии активации реакций.

Добавленная нами реакция 55 описывает термический распад перекиси водорода. Таблица 1.2 - Совокупность реакций, включенных в модель радиолиза Реакции Константа скорости, л моль с Энергия активации, кДж моль 1 2eaq- H2 2OH- 4,97 109 20,5 2 eaq- H H2 OH- 1,89 1010 12,6 3 eaq- OH OH- 3,00 1010 12,6 4 eaq- O- 2OH- 2,20 1010 12,6 5 eaq- HO2 HO2- 2,00 1010 12,6 6 eaq- O2- HO2- OH- 1,30 1010 18,8 7 eaq- H2O2 OH OH- 1,20 1010 15,1 8 eaq- HO2- OH- O- 3,50 109 12,6 9 eaq- O2 O2- 1,80 1010 13 10 eaq- H H 2,30 1010 12,2 11 eaq- H2O H OH- 19 18,8 12 2H H2 7,80 109 12,6 13 H OH H2O 2,50 1010 12,6 14 H HO2 H2O2 2,00 1010 12,6 15 H O2- HO2- 2,00 1010 12,6 16 H H2O2 H2O OH 8,42 106 13,6 17 H O2 HO2 2,10 1010 12,6 18 OH- H eaq- H2O 2,20 107 26 19 2OH H2O2 5,50 109 8 20 OH O- HO2- 2,00 1010 12,6 21 OH HO2 H2O O2 6,30 109 12,6 22 OH O2- OH- O2 8,20 109 12,6 23 H2O2 OH HO2 H2O 4,06 107 14 24 OH HO2- HO2 OH- 7,50 109 12,6 25 H2 OH H H2O 3,81 107 19 26 OH- OH O- H2O 1,20 1010 12,6 27 2O- H2O HO2- OH- 1,00 109 12,6 28 O2- O- H2O O2 2OH- 6,00 108 12,6 29 H2O2 O- O2- H2O 5,00 108 12,6 30 HO2- O- OH- O2- 4,00 108 12,6 31 H2 O- OH- H 8,00 107 12,6 32 O- H2O OH- OH 1,75 106 18,8 33 2HO2 H2O2 O2 8,30 105 24,7 34 H2O2 HO2 O2 OH H2O 0,2 20 35 O2- HO2 O2 HO2- 9,70 107 8,8 36 HO2 H O2- 7,50 105 12,6 37 2O2- 2H2O H2O2 O2 2OH- 0,3 12,6 38 H2O2 O2- O2 OH- OH 0,13 20 39 O2- HO2- O2 OH- O- 0,13 20 40 H O2- HO2 5,10 1010 12,6 41 H2O2 2OH 1,33 10-7 71,2 42 H2O2 OH- HO2- H2O 1,00 1010 12,6 43 HO2- H2O H2O2 OH- 1,13 106 12,6 44 H HO2- H2O2 2,00 1010 12,6 45 H OH- H2O 1,40 1011 12,6 46 H2O H OH- 2,52 10-5 45,4 47 O2 O- O3- 3,00 109 12,6 48 O- O3- 2O2- 7,00 108 12,6 49 H2O2 O3- O2 O2- H2O 1,60 106 12,6 50 HO2- O3- O2 OH- O2- 8,90 105 12,6 51 O3- O2 O- 3,00 102 12,6 52 H2 O3- O- OH- H 2,50 105 12,6 53 H O- OH 1,00 1010 12,6 54 OH- HO2 O2- H2O 1,00 1010 12,6 55 H2O2 0,5O2 H2O 1,80 10-6 62,1 56 Cu2 H Cu H 2,74 105 12,6 57 Cu2 eaq- Cu H2O 1,21 108 12,6 58 Cu H2O2 Cu2 OH OH- 2,22 104 12,6 59 Cu HO2 H2O Cu2 H2O2 OH- 6,99 106 12,6 60 Cu2 HO2 Cu H O2 3,64 103 12,6 61 2Cu2 H2 2Cu 2H 4,77 10-12 111 62 Cu O2 Cu2 O2- 3,24 107 14,2 63 H2O2 0,67O2 0,67H 0,67H2O 3,18 10-5 104,4 64 Fe2 OH Fe3 OH- 3,80 108 12,6 65 Fe3 H Fe2 H 9,90 107 12,6 66 Fe3 eaq- Fe2 H2O 1,97 1010 12,6 67 Fe2 HO2 Fe3 HO2- 2,10 106 12,6 68 H2O2 H2O 0,5O2 1,23 10-1 57,7 При моделировании радиолиза водного теплоносителя в медьсодержащих контурах совокупность реакций 1-55 была дополнена рядом реакций, учитывающих взаимодействие продуктов радиолиза воды с растворенной медью 56. Cu2 НCu H 57. Cu2 eaq-Cu H2О 58. Cu Н2О2Cu2 ОН ОН- 59. Cu НО2 Н2ОCu2 Н2О2 ОН- 60. Cu НО2Cu Н О2 Каталитическое действие ионов Cu2 на рекомбинацию Н2 и О2, представлено суммарной реакцией 61. Cu2 Н22Cu 2H Каталитическое действие ионов Cu2 на распад перекиси водорода интерпретировано в рамках следующего механизма 10 Константы скорости каталитического реакция 63 , а также термического реакция 55 распада Н2О2 были определены нами экспериментально и выражаются зависимостями , 1.5 где А1 4,8910-6с-1 Е1 77,7 кДж мольС , 1.6 где А2 6,2110-13с-1 Е2 104 кДж мольС 183 моль-1 0,596. При моделировании радиолиза воды в железо сталь содержащих контурах помимо реакций 1-63 таблицы 1.2 учитывались следующие реакции ионов растворенного Fe с продуктами радиолиза воды 64. Fe2 OH Fe3 OH- 65. Fe3 H Fe2 H 66. Fe3 e-aq Fe2 H2О 67. Fe2 HО2 Fe3 HО2- Каталитическое действие ионов Fe3 на распад перекиси водорода интерпретировано в рамках механизма, предложенного в 10 , из которого следует брутто-реакция 68. 2Н2О22Н2О О2, скорость этой реакции описывается уравнением 1.7 где 1.8 1.9 KF - константа гидролиза иона Fe3 , т.е. константа равновесия. Температурная зависимость константы KF была получена экстраполяцией ее экспериментальных значений при T 18,25 и 32 oC 1.10 где A 2,22 105 моль л E 10,25 ккал моль. Учитывая, что для реакторных контуров KF H , имеем 1.11 Рассчитанные и оцененные по доступным литературным данным константы скорости t 25оC и энергии активации реакций 56-68 приведены в таблице 1.2. Учет каталитического влияния поверхностей металлов контура на разложение H2O2 был проведен по следующей схеме.

При заданной температуре экспериментально определялись зависимости константы каталитического разложения H2O2 а от концентрации иона-катализатора Cu2 , Fe3 гомогенный катализ, б от отношения S V, где S - поверхность металла, V - объем раствора гетерогенный катализ. На основании полученных зависимостей строились корреляционные кривые Cu2 f1 SCu V Fe3 f2 SFe V при равенстве скоростей гомогенного и гетерогенного разложения H2O2. С помощью этих кривых каталитическое действие поверхностей металлов учитывалось при расчете радиолиза путем введения эквивалентной концентрации соответствующего иона-катализатора 10 . Исходными данными для расчета являются а мощности дозы от разных видов излучений в зонах облучений, б времена пребывания теплоносителя в зонах, в значения трековых радиационных выходов продуктов радиолиза, г константы скорости и энергии активации реакций, включенных в механизм радиолиза, д начальный химический состав теплоносителя концентрации Н2, О2, H2O2 и примесных ионов. Температурной зависимостью G пренебрегали.

Предполагалась аррениусовская зависимость от температуры констант скорости реакций из табл.1.2. Для решения системы обыкновенных дифференциальных уравнений, описывающих кинетику радиолиза, была использована система научных и технических расчетов MATLAB, Version 5.3, Release 10 . Данные, содержащиеся в этой модели очень важны в данной работе, для сравнения с экспериментальными данными по распаду перекиси водорода на циркониевых сплавах.

Вполне вероятно, что каталитическое воздействие Zr и Cu на распад перекиси имеют схожие механизмы. 1.3.3