рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Требования к математическим моделям.

Требования к математическим моделям. - раздел Высокие технологии, Объекты проектирования можно разделить на изделия и процессы, а процессы в свою очередь, на технологические и вычислительные Математические Модели (Мм) Служат Для Описания Свойств Объектов В Процедурах ...

Математические модели (ММ) служат для описания свойств объектов в процедурах АП. Если проектная процедура включает создание ММ и оперирование ею с целью получения полезной информации об объекте, то говорят, что процедура выполняется на основе математического моделирования.

К математическим моделям предъявляются требования универсальности, адекватности, точности и экономичности.

Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Математическая модель отражает лишь некоторые свойства объекта. Так, большинство ММ, используемых при функциональном проектировании, предназначено для отображения протекающих в объекте физических или информационных процессов, при этом не требуется, чтобы ММ описывала такие свойства объекта, как геометрическая форма составляющих его элементов. Например, ММ резистора в виде уравнения закона Ома характеризует свойство резистора пропускать электрический ток, но не отражает габариты резистора, как детали, его цвет, механическую прочность, стоимость и т. п.

Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ. Пусть отражаемые в ММ свойства оцениваются вектором выходных параметров Y=(y1, у2 ...,уm). Тогда, обозначив истинное и рассчитанное с помощью ММ значения j-го выходного параметра через yj ист и yj м соответственно, определим относительную погрешность εj расчета параметра yj как

 

εj =( yj м yj ист)/ yj ист . (1)

 

Получена векторная оценка ε = (ε1, ε2, ..., εm). При необходимости сведения этой оценки к скалярной используют какую-либо норму вектора ε, например

 

(2)

 

Адекватность MM — способность отображать заданные свойства объекта с погрешностью не выше заданной. Поскольку выходные параметры являются функциями векторов параметров внешних Q и внутренних X, погрешность εj - зависит от значений Qи X. Обычно значения внутренних параметров ММ определяют из условия минимизации погрешности εм в некоторой точке Qном пространства внешних переменных, а используют модель с рассчитанным вектором X при различных значениях Q. При этом, как правило, адекватность модели имеет место лишь в ограниченной области изменения внешних переменных— области адекватности (ОА) математической модели:

 

ОА = {Q | εм < δ},

 

где δ > 0 - заданная константа, равная предельно допустимой погрешности модели.

Экономичность ММ характеризуется затратами вычислительных ресурсов (затратами машинных времени Тм и памяти Пм) на ее реализацию. Чем меньше Тм и Пм, тем модель экономичнее. Вместо значений Тм и Пм, зависящих не только от свойств модели, но и от особенностей применяемой ЭВМ, часто используют другие величины, например: среднее количество операций, выполняемых при одном обращении к модели, размерность системы уравнении, количество используемых в модели внутренних параметров и т. п.

Требования высоких точности, степени универсальности, широкой области адекватности, с одной стороны, и высокой экономичности, с другой стороны, противоречивы. Наилучшее компромиссное удовлетворение этих противоречивых требований зависит от особенностей решаемых задач, иерархического уровня и аспекта проектирования. Это обстоятельство обусловливает применение в САПР широкого спектра математических моделей.

 

Классификация математических моделей.

Основные признаки классификации и типы ММ, применяемые в САПР, даны в табл. 1.

 

Таблица 1

Признак классификации   Математические модели  
Характер отображаемых свойств объекта   Структурные; функциональные  
Принадлежность к иерархическому уровню   Микроуровня; макроуровня; метауровня  
Степень детализации описания внутри одного уровня   Полные; макромодели  
Способ представления свойств объекта   Аналитические, алгоритмические, имитационные
Способ получения модели Теоретические, эмпирические

 

По характеру отображаемых свойств объекта ММ делятся на структурные и

функциональные.

Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические.

В топологических ММ отображаются состав и взаимосвязи элементов объекта. Их чаще всего применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определенным пространственным позициям (например, задачи компоновки оборудования, размещения деталей, трассировки соединений) или к относительным моментам времени (например, при разработке расписаний, технологических процессов). Топологические модели могут иметь форму графов, таблиц (матриц), списков и т. п.

В геометрических ММ отображаются геометрические свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; алгебрологических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов, и т. п. Геометрические ММ применяют при решении задач конструирования в машиностроении, приборостроении, радиоэлектронике, для оформления конструкторской документации, при задании исходных данных на разработку технологических процессов изготовления деталей. Используют несколько типов геометрических ММ.

В машиностроении для отображения геометрических свойств деталей со сравнительно несложными поверхностями применяют ММ, представляемые в аналитической или алгебрологической форме (аналитические, алгебрологические). Аналитические ММ — уравнения поверхностей и линий, например уравнение плоскости имеет вид ax+by + cz + d=0, а эллипсоида — вид (х/а)2 + (у/b)2 + + (z/c)2 + d=0, где х, у, z — пространственные координаты, а, b, с, d — коэффициенты уравнений. В алгебрологических ММ тела описываются системами логических выражений, отражающих условия принадлежности точек внутренним областям тел.

Для сложных поверхностей аналитические и алгебрологические модели оказываются слишком громоздкими, их трудно получать и неудобно использовать. Область их применения обычно ограничивается поверхностями плоскими и второго порядка.

В машиностроении для отображения геометрических свойств деталей со сложными поверхностями применяют ММ каркасные и кинематические.

Каркасные ММ представляют собой каркасы — конечные множества элементов, например точек или кривых, принадлежащих моделируемой поверхности. В частности, выбор каркаса в виде линий, образующих сетку на описываемой поверхности, приводит к разбиении) поверхности на отдельные участки. Кусочно-линейная аппроксимация на этой сетке устраняет главный недостаток аналитических моделей, так как в пределах каждого из участков, имеющих малые размеры, возможна удовлетворительная по точности аппроксимация поверхностями с простыми уравнениями. Коэффициенты этих уравнений рассчитываются исходя из условий плавности сопряжений участков.

В кинематических ММ поверхность представляется в параметрическом виде R(u, υ), где R=(x, у, z), а u и υ - параметры. Такую поверхность можно получить как результат перемещения в трехмерном пространстве кривой R(u), называемой образующей, по некоторой направляющей линии.

Коэффициенты уравнений во всех рассмотренных моделях, как правило, не имеют простого геометрического смысла, что затрудняет работу с ними в интерактивном режиме. Этот недостаток устраняется в канонических моделях и в геометрических макромоделях.

Канонические модели используют в тех случаях, когда удается выделить параметры, однозначно определяющие геометрический объект и в то же время имеющие простую связь с его формой. Например, для плоского многоугольника такими параметрами являются координаты вершин, для цилиндра — направляющие косинусы и координаты некоторой точки оси, а также радиус цилиндра.

Геометрические макромодели являются описаниями предварительно отобранных типовых геометрических фрагментов. Такими фрагментами могут быть типовые сборочные единицы, а их макромоделями — условные номера, габаритные и стыковочные размеры. При оформлении конструкторской документации макромодели используют для описания типовых графических изображений, например зубчатых колес, винтовых соединений, подшипников и т. п.

Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.

Деление описаний объектов на аспекты и иерархические уровни непосредственно касается математических моделей. Выделение аспектов описания приводит к выделению моделей электрических, механических, гидравлических, оптических, химических и т. п., причем модели процессов функционирования изделий и модели процессов их изготовления различные, например модели полупроводниковых элементов интегральных схем, описывающих процессы диффузии и дрейфа подвижных носителей заряда в полупроводниковых областях при функционировании прибора и процессы диффузии примесей в полупроводник при изготовлении прибора.

Использование принципов блочно-иерархического подхода к проектированию приводит к появлению иерархии математических моделей проектируемых объектов. Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако для большинства предметных областей можно отнести имеющиеся иерархические уровни к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями.

В зависимости от места в иерархии описаний математические модели делятся на ММ, относящиеся к микро-, макро- и метауровням.

Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывных пространстве и времени. Типичные ММ на микроуровне-дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрических потенциалов, давлений, температур и т. п. Возможности применения ММ в виде ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время t, а вектор зависимых переменных V составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости механических систем, напряжения и силы тока электрических систем, давления и расходы гидравлических и пневматических систем и т. п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состоянии объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 103, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.

На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние для элементов фазовые переменные, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, то укрупнение элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем на макроуровне.

В ряде предметных областей удается использовать специфические особенности функционирования объектов для упрощения ММ. Примером являются электронные устройства цифровой автоматики, в которых возможно применять дискретное представление таких фазовых переменных, как напряжения и токи. В результате ММ становится системой логических уравнений, описывающих процессы преобразования сигналов. Такие логические модели существенно более экономичны, чем модели электрические, описывающие изменения напряжений и сил токов как непрерывных функций времени. Важный класс ММ на метауровне составляют модели массового обслуживания, применяемые для описания процессов функционирования информационных и вычислительных систем, производственных участков, линий и цехов.

Структурные модели также делятся на модели различных иерархических уровней. При этом на низших иерархических уровнях преобладает использование геометрических моделей, на высших иерархических уровнях используются топологические модели.

По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели.

Полная ММ — модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т. е. состояния всех элементов проектируемого объекта).

Макромодель — ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.

 

• Примечание. Понятия «полная ММ» и «макромодель» относительны и обычно используются для различения двух моделей, отображающих различную степень детальности описания свойств объекта.

 

По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические.

Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров. Такие ММ характеризуются высокой экономичностью, однако получение формы удается лишь в отдельных частных случаях, как правило, при принятии существенных допущений и ограничений, снижающих точность и сужающих область адекватности модели.

Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма. Типичной алгоритмической ММ является система уравнений, дополненная алгоритмом выбранного численного метода решения и алгоритмом вычисления вектора выходных параметров как функционалов решения системы уравнений.

Имитационная ММ — алгоритмическая модель, отражающая поведение исследуемого объекта во времени при задании внешних воздействий на объект. Примерами имитационных ММ могут служить модели динамических объектов в виде систем ОДУ и модели систем массового обслуживания, заданные в алгоритмической форме.

Для получения ММ используют методы неформальные и формальные.

Неформальные методы применяют на различных иерархических уровнях для получения ММ элементов. Эти методы включают изучение закономерностей процессов и явлений, связанных с моделируемым объектом, выделение существенных факторов, принятие различного рода допущений и их обоснование, математическую интерпретацию имеющихся сведений и т. п. Для выполнения этих операций в общем случае отсутствуют формальные методы, в то же время от результата этих операций существенно зависят показатели эффективности ММ — степень универсальности, точность, экономичность. Поэтому построение ММ элементов, как правило, осуществляется квалифицированными специалистами, получившими подготовку как в соответствующей предметной области, так и в вопросах математического моделирования на ЭВМ.

Применение неформальных методов возможно для синтеза ММ теоретических и эмпирических. Теоретические ММ создаются в результате исследования процессов и их закономерностей, присущих рассматриваемому классу объектов и явлений; эмпирические ММ — в результате изучения внешних проявлений свойств объекта с помощью измерений фазовых переменных на внешних входах и выходах и обработки результатов измерений.

Решение задач моделирования элементов облегчается благодаря тому, что для построения большинства технических объектов используются типовые элементы (количество типов сравнительно невелико). Поэтому разработка ММ элементов производится сравнительно редко. Единожды созданные ММ элементов в дальнейшем многократно применяют при разработке разнообразных систем из этих элементов. Примерами таких ММ на микроуровне служат описания конечных элементов для анализа напряженно-деформированного состояния деталей, множество типов конечных элементов включает стержни, плоские элементы в форме треугольников и четырехугольников, трехмерные элементы типа параллелепипеда, тетраэдра и т. п.; примерами ММ геометрических элементов могут служить уравнения линий прямых, дуг окружностей, плоскостей и поверхностей второго порядка; примерами ММ элементов на макроуровне являются ММ элементов интегральных схем— транзисторов, диодов, резисторов, конденсаторов.

Формальные методы применяют для получения ММ систем при известных математических моделях элементов.

Таким образом, в программах автоматизированного анализа, используемых в САПР, получение ММ проектируемых объектов обеспечивается реализацией ММ элементов и методов формирования ММ систем.

– Конец работы –

Эта тема принадлежит разделу:

Объекты проектирования можно разделить на изделия и процессы, а процессы в свою очередь, на технологические и вычислительные

Под проектированием понимают процесс при котором исходная информация о... Исходная информация обычно заключена в техническом задании ТЗ содержащем помимо выполняемой функции объекта...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Требования к математическим моделям.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аспекты описаний проектируемых объектов
  Декомпозиция описаний по характеру свойств отображаемого объекта позволяет выделить функциональный, конструкторский и технологический аспекты описаний. Ф

Составные части процесса проектирования
Проектирование как процесс развивающейся во времени расчленяется на стадии, этапы, проектные процедуры и операции. При проектировании сложных систем выделяют стадии: 1. предпроект

Нисходящее и восходящее проектирование
  Если решение задач высоких иерархических уровней предшествует решению более низких иерархических уровней, то проектирование называется нисходящим. Если раньше выполняются эта

Исходные описания проектируемых объектов часто представляют собой ТЗ на проектирование.
Содержание ТЗ: 1. Назначение объекта 2. Условия эксплуатации ( окружающей среды, напряжение питания

Типичная последовательность проектных процедур.
Проектирование начинается с синтеза исходного варианта структуры системы. Для оценки этого варианта создаётся модель: ММ – при автоматизированном проектировании; эксперим

Разновидности САПР
  Классификацию САПР осуществляют по ряду признаков, например, по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы — ядра САПР.

Структура САПР
Как и любая сложная система, САПР состоит из подсистем (рис. 1.1). Различают подсистемы проектирующие и обслуживающие. Проектирующие подсистемы непосредственно выполняют проектные п

Виды обеспечения САПР
Средства автоматизации проектирования можно сгруппировать по видам обеспечения автоматизированного проектирования. Техническое обеспечение САПР представляет собой совокупность взаимосвязан

Функции, характеристики CAE/CAD/CAM-систем
  Функции CAD-систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D от­носятся черчение, оформление ко

Возможности САПР
Системы автоматизированной разработки чертежей Система автоматизированного проектирования должна решать несколько различных задач: дать пользователю возможность производить геометрические

Системы автоматизированного проектирования печатных плат и принципиальных схем
  Число различных пакетов для автоматизации проектирования печатных плат в настоящее время в несколько раз превышает число пакетов для разработки произвольных чертежей. Это связано с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги