рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Структура и свойства железоуглеродистых сплавов

Структура и свойства железоуглеродистых сплавов - раздел Промышленность, Микроскопический анализ металлов Техническое Железо. Структура Технического Железа С Концентрацией Угле...

Техническое железо. Структура технического железа с концентрацией углерода 0,012 % (рис. 4.4) состоит из светлых полиэдрических зёрен феррита и цементита третичного, который расположен в виде светлых включений по границам зёрен феррита.

Феррит является пластичной и мягкой составляющей (800 НВ,
δ = 40%). Цементит – твёрдый и хрупкий (8000 НВ, δ = 0%). Наличие на границах зёрен прожилок цементита третичного понижает пластичность и вязкость сплава.

Рис. 4.4. Технические (двухфазное) железо

 

Стали. В процессе охлаждения из аустенита доэвтектоидных сталей выделяется феррит (рис. 4.5а). Температура, при которой начинает выделяться феррит, определяется линией GS (см. рис. 4.1).

Выделение феррита приводит к обогащению аустенита углеродом. При 727 °С концентрация углерода в аустените достигает 0,8%, и в этих условиях имеет место эвтектоидная реакция

А0,8% → П0,8%(Ф+ Ц).

Таким образом, структура доэвтектоидных сталей при комнатной температуре состоит из феррита, выделившегося в интервале температур Аr3–Аr1 (линии GS и РS), и перлита, образовавшегося при 727 °С.

В структуре доэвтектоидной стали цементита много больше, чем в техническом железе, и это повышает твёрдость стали (рис. 4.2).

Сталь с содержанием углерода 0,8% имеет структуру перлита и называется эвтектоидной сталью. Перлит чаще всего имеет пластичное строение, при котором кристаллы цементита перемежаются с кристаллами феррита (рис. 4.5б). Увеличение содержания углерода повышает твердость, прочность, но снижает пластичность сплава.

 

Рис. 4.5. Структуры сталей: а – доэвтектоидная сталь, б – эвтектоидная сталь,
в – заэвтектоидная сталь

 

Структура заэвтектоидной стали также формируется из аустенита. В интервале температур Аrст – Аr1 (линии SE и SK) из аустенита выделяется цементит вторичный, который, как правило, располагается по границам зёрен. При 727 °С концентрация углерода в аустените будет соответствовать 0,8%, он рас­падается с образованием перлита.

Таким образом, структура заэвтектоидной стали при комнатной температуре – перлит и цементит вторичный (рис. 4.5в). Доля цементитной составляющей возросла в сравнении с предыдущими сплавами. Теперь цементит не только входит в перлит (эвтектоид), но и твёрдость стали возрастает до 3000 НВ.

Чугуны. Белый эвтектический чугун кристаллизуется при 1147 °С
(см. рис. 4.1, линия ЕСF) с образованием ледебурита:

Ж4,3% С → Л(А2,14% С + Ц6,67% C).

Охлаждение до 727 °С приводит к уменьшению концентрации углерода в аустените до 0,8 %. При 727 °С аустенит превращается в перлит.

Таким образом, эвтектический чугун (рис. 4.6б) при комнатной температуре имеет структуру ледебурита, состоящего из перлита и цементита. Основной фазой в белом чугуне является цементит, поэтому белый чугун твёрдый (6500 НВ).

Структура доэвтектических чугунов (рис. 4.6а) состоит из перлита, вторичного цементита и ледебурита, а заэвтектических чугунов (рис. 4.6в) – из ледебурита и цементита, выделившегося из жидкой фазы.

Рис. 4.6. Структуры белых чугунов: а – доэвтектический чугун, б – эвтектический чугун,
в – заэвтектический чугун

 

Зависимость свойств серых чугунов от структуры значительно сложнее, чем у стали, так как серые чугуны состоят из металлической основы и графитовых включений. Поэтому для характеристики структуры серого чугуна необходимо определи размеры, форму, распределение графита, а также структуру металлической основы (рис. 4.7).

 

 

Рис. 4.7. Серый перлито-ферритный чугун

 

Чем меньше графитовых включений, тем они мельче и сильнее изолированы друг от друга, тем выше прочность чугуна при одной и той же металлической основе.

 

 

Рис. 4.8. Высокопрочный перлито-ферритный чугун

 

Металлическая основа серого чугуна СЧ 15 с содержанием углерода
3,1–3,6% (рис. 4.7) состоит из феррита (белая составляющая) и перлита (тёмная составляющая). Грубо- или среднепластинчатые графитовые включения в виде тёмных полос разрезают металлическую основу. Поэтому такой серый чугун имеет низкую прочность при работе на растяжение и практически нулевую пластичность: σВ = 150 МПа, δ = 0,5%. Твердость определяется строением металлической основы и соответствует
1630–2290 НВ.

 

Рис. 4.9. Ковкий ферритный чугун

 

Высокопрочный чугун в отличие от серого имеет включения графита шаровидной формы, а не пластинчатой. Такой чугун имеет более высокие механические свойств. Структура ВЧ 45 (рис. 4.8) с содержанием углерода
3,3–3,5% состоит из феррита (светлая составляющая), перлита (тёмная сос­тавляющая) и графита шаровидной формы (тёмные округлые включения) (рис. 4.8). Прочность при растяжении σВ = 450 МПа, относительное удлинение δ = 5%. Твёр­дость определяется металлической основой и соответствует 1700–2070 НВ.

Ковкий чугун имеет графит хлопьевидной формы. Это обеспечивает хорошие механические свойства. Структура КЧ 35–10 с содержанием
2,4–2,8% С состоит из светлых зёрен феррита и хлопьевидного графита (рис. 4.9).

Ферритная металлическая основа обеспечивает невысокую твёрдость (1490–1630 НВ). Прочность чугуна σВ = 350 МПа, относительное удлинение δ = 10%.

 

– Конец работы –

Эта тема принадлежит разделу:

Микроскопический анализ металлов

Микроскопический анализ металлов... Цель работы ознакомление с микроскопическим анализом металлов и сплавов с... Содержание работы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Структура и свойства железоуглеродистых сплавов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕРИАЛОВЕДЕНИЕ
Методические указания к лабораторным работам     Омск Издательство ОмГТУ 2008 Составители: Кушнер В. С. Негров Д. А. Бур

Макроанализ
Макроструктура – строение металла, видимое без увеличения или при небольшом увеличении (до 10–30 раз) с помощью лупы. При макроанализе можно одновременно наблюдать большую поверхность

Микроанализ
Микроскопический анализ (микроанализ) заключается в исследовании структуры ме­талла при больших увеличениях (более 30 крат) и применяя-ется: · для определения количества и типа стру

Приготовление микрошлифа
Образец металла, специально приготовленный для исследования его структуры под микроскопом, называется микрошлифом. Для микроанализа из исследуемого материала вырезают образец, поверхность ег

Микроскопы металлографические
Для исследования микроструктуры металлов используются металлографические микроскопы. Металлографический микроскоп позволяет рассматривать непрозрачные тела в отраженном свете. В этом основно

Проведение испытаний
Для определения средней величины зерна существует несколько методов, среди которых наиболее распространенным является метод площадей. Измерение этим методом величины зерна производится на пр

Подготовка микроскопа к визуальному наблюдению
· Установить объектив и окуляр соответственно выбранному увеличению. · Винтами установить отверстие съёмной шайбы над объективом. · Над отверстием съемной шайбы установить микрошл

Определение цены деления
Для определения цены деления окуляра-микрометра необходимо: · подготовить микроскоп к наблюдению; · установить объект-микрометр на столик микроскопа таким образом, чтобы стекло со

Определение величины зерна стали
Для определения величины (балла) зерна стали необходимо (рис. 1.8): · микрошлиф поместить на столик микроскопа; · добиться чёткого изображения структуры; · просмотреть не

Микроскопический анализ металлов
1. Цель работы. 2. Ознакомление с устройством микроскопа. Оптическая схема Обозначения: _________________________________ _________________________

Теоретические основы процесса кристаллизации металлов
Процесс образования кристаллов называется кристаллизацией. Визуальное изучение кристаллизации металлов сопряжено с техническими трудностями. Поскольку законы кристаллизации растворов солей и

Кристаллизация солей
В данной работе студенты изучают процесс кристаллизации четырёх солей: нитрата свинца Рb(NO3)2, хлорида аммония NH4Cl, дихромата калия К2

Порядок выполнения работы
1. Глядя в окуляр, вращать зеркало микроскопа, добиваясь яркого освещения (получить светлое поле). 2. Предметное стекло с нанесенной на него каплей соли установить на предметный столик так

Изучение процесса кристаллизации
1. Цель работы. 2. Изменение свободной энергии жидкости и твердого тела в зависимости от температуры.  

Построение диаграммы состояния
В основе построения диаграмм состояний лежит определение критических точек при охлаждении жидкого сплава (чистого металла) до нормальной температуры. При этом пользуются методом термического ана

Порядок выполнения работы
1. Перед началом измерений сплав находится в жидком состоянии. Когда печь выключают, сплав начинает охлаждаться. С момента начала охлаждения включить секундомер и фиксировать показания милливольтме

Отчет по лабораторной работе №3
Построение диаграммы состояния «Свинец – олово» термическим методом 1. Цель работы. 2. Схема установки проведения эксперимента.  

Влияние концентрации углерода на свойства железоуглеродистых сплавов
По мере повышения концентрации углерода в стали и чугуне изменяются структура и их механические свойства. Прочность горячекатаной стали в нормализованном состоянии с увеличением содержания углерода

Порядок выполнения работы
1. Вычертить диаграмму «Fe − Fe3C» с указанием температур превращений и концентраций углерода для характерных точек. 2. Указать фазы и структурные составляющие в ра

Отчет по лабораторной работе № 4
Микроструктура железоуглеродистых сплавов в равновесном состоянии   1. Цель работы. 2. Диаграмма состояния сплавов «Железо – цементит».

Процессы нагрева стали
Температура нагрева определяется положением критических точек А1 и А3 на диаграмме «Железо – цементит» (рис. 5.1а). Для правильного выполнения термической обрабо

Процессы охлаждения стали
Охлаждающая среда обеспечивает определённую скорость охлаждения и назначается исходя из требуемых структуры и свойств стали. Получаемую структуру можно определить при наложении векторов скоростей о

Превращение аустенита при отжиге
При скорости охлаждения V1 ≈ 0,03 °С/с, т. е. менее VКР, аустенит превращается в феррит и цементит: Feγ(C)→ Feα(C)

Превращение аустенита при нормализации
Скорость охлаждения V2 ≈ 30 °С/с также меньше критической. Превращение диф­фузионное. Образующаяся структура называется сорбитом – дисперсная (т. е. мелкая) ферритоце

Превращение аустенита при закалке
Скорость охлаждения V4 ≈ 600 °С/с, т. е. превышает критическую. Аустенит пре­вращается в мартенсит закалки: Feγ(C)→ Feα(C).

Влияние температуры отпуска на структуру стали
Температура нагрева при отпуске зависит от назначения стали. При нагреве до различных температур могут быть получены различные сочетания твёрдости и вязкости. Выполнение одного из видов отпуска зак

Порядок выполнения работы
1. Получить образцы конструкционной стали 40Х. 2. Назначить режимы термической обработки: · закалку с недогревом; · закалку неполную; · закалку полную;

Термическая обработка стали
1. Цель работы. Химической обработке подвергались образцы из стали марки _______ Химический состав ___________________________________________ Критические точки: А

Влияние скорости охлаждения на превращение аустенита
В зависимости от скорости охлаждения превращение аустенита может быть диффузионным и бездиффузионным. Критерием превращения является критическая скорость закалки VКР – наименьшая

Влияние температуры отжига на структуру и свойства стали
Микрошлиф 1 – сталь 45 после полного отжига (температура нагрева 860 °С). При нагреве создаётся мелкое зерно аустенита, а при по­следующем охлаждении из него образуются мелкие равноосные (окру

Влияние температуры отпуска на структуру и свойства стали
Микрошлиф 6 – сталь У8А после закалки и низкого отпуска. Низкий отпуск практически не изменяет вид мартенсита. Игольчатость его строения сохраняется, но несколько увеличивается травимость

Микроструктура термически обработанных сталей
1. Цель работы. Микроструктура термически обработанных сталей изучается на микроскопе ________________ при увеличении __________________________ 2. Результаты просмотра структур:

Библиографический список
1. Арзамасов, Б.Н. Материаловедение: учеб. для студентов вузов / Б.Н. Арзамасов и др.– 3-е изд. перераб. и доп. – М.: Изд-во МВТУ им. Н.Э. Баумана, 2001. – 734 с. 2. Гуляев, А.П.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги