рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производственной практики

Производственной практики - раздел Производство, ДНЕВНИК Производственной практики «Контроль Качества И Стандартизации Лекарственных Средств»...

«Контроль качества и стандартизации лекарственных средств»

 

Специальность – «Фармация»

 

Курс 4 Группа 403

 

Ф. И. О. студента: Имашпаевой Меруерт Даркановны

 

Время прохождения практики: с 04.07. 2013 г. по 20.07.2013 г.

 

Количество часов:39

 

Форма контроля – дифференцированный зачет

 

 

Оценка за производственную практику

 

 

Оценка Буквенный эквивалент Рейтинговый балл в % В баллах

 

Подпись председателя комиссии

по приему дифференцированного зачета

Подпись (ФИО)

Алматы – 2013

Дата Описание работы Подпись руководителя
  Тема: Фотометрия в УФ области спектра Фотометрические (абсорбционные) методы анализа основа­ны на способности анализируемого вещества избирательно по­глощать свет. Анализ веществ, основанный на измерении светопоглощё-ния, включает спектрофотометрию и фотоколориметрию. Спектрофотометрия основана на поглощении монохромати­ческого света, т. е. света определенной длины волны (1-2 нм) в видимой, ультрафиолетовой и инфракрасной областях спектра. Такого рода измерения поглощения света осуществляются при помощи спектрофотометров различных марок, в которых используется всегда монохроматический поток световой энер­гии, получаемый посредством оптической системы, называемой монохроматором. Поглощение в ультрафиолетовой (УФ) и видимой областях спектра связано в основном с возбуждением электронов. Поглощение света в инфракрасной области спектра (ИК) обусловлено молекулярными колебаниями. В зависимости от диапазона длин волн, при которых измеряют светопо-глощение растворов химических ве­ществ, методы, основанные на измере­нии светопоглощения, подразделяются на спектрофотометрию в УФ-области спектра с диапазоном длин волн 200- 400 нм, спектрофотометрию в види­мой области спектра (400-760 нм) и спектрофотометрию в инфракрасной области спектра (760-20 000 нм). Но обычно единицей измерения длин волн ИК-спектров является микрон (1 мк= = 10-4 см) или волновое число (см-1), т. е, число волн в 1 см.   В фармацевтическом анализе чаще используется спектроско­пия в УФ- и видимой области спектра. Метод УФ-спектроскопии включен в ГФ IX, ГФ X и МФ II, а также в последние издания фармакопеи почти всех стран для определения подлинности, чистоты и количественного опреде­ления вещества в препаратах. Абсорбционный спектр или спектр поглощения представляет собой графическое изображение количества света, поглощенно­го веществом при определенных значениях длин волн. Для построения характеристической кривой поглощения - величины длин волн (Я,) при УФ-спектроскопии или волновые числа (см-1) при ИК-спектроскопии - наносят на ось абсцисс, а величину погашения (Л)1 или проценты пропускания (Г) (при ИК-спектроскопии) - на ось ординат (рис. 5, 6). При построении кривых спектров погашения в УФ- и види­мой части спектров можно использовать величины удельных показателей погашения (Ј1%iCM) или молярного показателя поглощения (е)2, где е - оптическая плотность 1 М раствора ве­щества при толщине слоя в 1 см; Ј1%iCM - величина погашения раствора, содержащего 1 г вещества в 100 мл раствора при тол­щине слоя в 1 см. Эти величины определяются экспериментально, для многих веществ они приведены в литературе. Характеристикой спектра поглощения является положение максимумов (минимумов) поглощения света веществом, а так­же интенсивность поглощения, что характеризуется оптической плотностью (D) или удельным показателем поглощения (Ј1% 1см) при определенных длинах волн. УФ-спектрофотометрическое измерение проводят обычно в растворах. В качестве растворителей используется дистиллиро-     ванная вода, кислоты, щелочи, спирты (этиловый, метиловый) и некоторые другие органические растворители. Растворитель не должен поглощать свет в той области спектра, что и исследуемое вещество. Характер спектра может изменяться в различных растворителях, а также при изменении рН среды. Факторами, обусловливающими поглощение света исследуе­мыми веществами, является наличие в их молекулах так назы-     Каждая функциональная группа в молекуле вещества ха­рактеризуется поглощением света в определенной области спектра, что и используется для целей идентификации и коли­чественного определения вещества в препарате. Кроме хромофоров, в состав молекулы могут входить функ­циональные группы, которые сами по себе не поглощают в близ­ком ультрафиолете, но могут влиять на поведение сопряжен­ного с ними хромофора. Такие группы, называемые ауксохро-мами, обычно вызывают появление поглощения при больших длинах волн и с большим значением коэффициента погашения, чем это свойственно данному хромофору. Примеры ауксохро-мов: -SH, -NH2, -ОН. ИК-спектры для большинства органических соединений, в отличие от УФ-спектров, характеризуются наличием большего числа пиков поглощения (см. рис. 6). Поэтому метод ПК-спект­роскопии дает возможность получить наиболее полную инфор­мацию о строении и составе анализируемого вещества, позво­ляющую идентифицировать очень близкие по структуре соеди­нения. В ГФ X и МФ II метод ИК-спектроскопии принят для иден­тификации многих органических лекарственных веществ с по­лифункциональными группами в их молекулах путем сравнения со спектрами стандартных образцов, снятых в одинаковых ус­ловиях. В оригинальной литературе последних лет приведены! ИК-спектры антибиотиков, гормонов, кумаринов и многих дру­гих Лекарственных веществ органической природы. В связи с-возрастающими требованиями к качеству лекарств ИК-спектро-скопия как один из надежных методов идентификации приобре­тает все большее значение.  
  Тема: Фотометрия в видимой области спектра
Фотометрические детекторы

 

Наиболее часто в ЖХ применяют фотометрические детекторы, работа которых основана на измерении поглощения (абсорбции) света в ультрафиолетовой или видимой областях спектра. Это связано с тем, что большинство химических соединений имеют достаточно интенсивные полосы поглощения в диапазоне длин волн 200-800 нм. Наличие подходящих растворителей, прозрачных в этом диапазоне длин волн, делает фотометрические методы особенно пригодными для градиентного элюирования. Фотометрические детекторы имеют достаточно высокую чувствительность для поглощающих свет веществ, широкий линейный динамический диапазон (до 105), малый рабочий объем ячеек (<1мкл), небольшое экстраколоночное расширение пиков и высокую воспроизводимость показаний. Они являются недеструктивными, относительно нечувствительными к колебаниям потока подвижной фазы и изменениям температуры. Чувствительность фотометрических ультрафиолетовых детекторов может доходить до 0,001 единиц оптической плотности на всю шкалу при 1% шума. При такой высокой чувствительности могут быть зафиксированы малые количества (до нескольких нг) слабо абсорбирующих УФ веществ. Широкая линейная область позволяет анализировать как примеси, так и основные компоненты на одной хроматограмме.

Фотометрические детекторы подразделяют на детекторы с фиксированной длиной волны, детекторы со сменной с помощью фильтров длиной волны и спектрофотометрические детекторы с плавно изменяемой длиной волны в определенной области длин волн.

Наиболее простые и дешевые УФ детекторы широко применяют в ВЭЖХ на приборах, предназначенных для массовых анализов. При применении ртутной лампы низкого давления, обладающей высокой стабильностью и долгим временем жизни (более 5000 ч), детектирование проводят на длине волны 254 нм, которой соответствует 90% энергии излучения. На этой длине волны высоким поглощением обладают многие органические соединения (ароматические, гетероциклические, кетоны и др.). В таком детекторе свет от источника излучения проходит через проточную ячейку, в которую из хроматографической колонки поступает поток элюента. Наиболее часто применяют ячейки с длиной оптического пути 10 мм, диаметром светового канала около 1 мм, с рабочим объемом около 8 мкл. Они оптимальны для аналитических колонок внутренним диаметром 4-6 мм, заполненных сорбентом с размером частиц около 5 мкм. Рабочий объем ячейки является одним из важнейших ее параметров. Например, ячейка объемом 8-10 мкл может привести к дополнительному размыванию пика на 30-50 мкл и может оказаться непригодной для пиков шириной менее 100 мкл. Уменьшение объема ячейки может быть достигнуто двумя путями: уменьшением длины оптического пути и уменьшением диаметра канала ячейки. Последнее приводит к падению интенсивности проходящего через нее света и к увеличению шума. Оба эти эффекта снижают чувствительность детектирования.

C целью компенсации фона в детекторах чаще всего используют две ячейки: рабочую и сравнительную. Для двухканального детектирования используют статический метод подключения сравнительной ячейки, в котором ее заполняют чистым растворителем; и динамический метод, когда поток элюента от насоса разделяют на 2 части и пропускают одну часть через рабочую, а другую часть через сравнительную колонку и сравнительную ячейку. В третьем варианте используют динамический метод с использованием дополнительного насоса низкого давления для пропускания через сравнительную ячейку того же растворителя. В динамическом режиме можно подсоединять сравнительную ячейку между сосудом с растворителем и насосом в зоне всасывания, а рабочую ячейку - после разделительной колонки. В последнее время получили распространение детекторы с одной ячейкой с компенсацией шума при помощи электронных средств.

Одной из основных проблем конструирования фотометрических детекторов является обеспечение возможности фотометрирования в достаточно широком диапазоне длин волн. Это необходимо не только для получения максимальной чувствительности на длине волны, соответствующей ширине полосы максимального поглощения вещества, но и для значительного снижения чувствительности, облегчающего линейное детектирование при высоких концентрациях в случае препаративной хроматографии. Спектральный диапазон и степень его разделения на поддиапазоны зависит от спектральной характеристики источника изучения и от способа выделения необходимой спектральной полосы, осуществляемого до измерительной ячейки или после нее. Некоторые источники излучения имеют линейчатый спектр (например, ртутная лампа - 254, 303, 313, 365, 436, 546 нм и т.д.), другие -непрерывный спектр (например, дейтериевая лампа излучает в диапазоне 190-600 нм). Интенсивность их излучения в пределах рабочего диапазона приблизительно одинакова. Необходимую спектральную полосу выделяют двумя различными способами: с помощью дифракционных решеток, имеющих 1000-3000 штрихов на 1 мм, и применением интерференционных фильтров с заданной шириной спектральной полосы. В обоих случаях может быть получена спектральная полуширина от 1-2 нм до 10-20 нм.

Характерной особенностью многих фильтровых УФ детекторов является использование в них источников линейчатого спектра. Кроме ртутной применяют кадмиевую и цинковую лампы с линиями на 229 и 214 нм соответственно. Применяют также преобразователи излучения с 254 на 280-290 нм и другие длины волн, отсутствующие в спектре ртути. Фильтровый УФ детектор, например, с четырьмя интерференционными фильтрами на 217 нм (полуширина полосы пропускания 20 нм), 254 нм (42 нм), 263 нм (15 нм), 279 нм (12 нм) перекрывает область 200-300 нм и реализует полные возможности 4-хволновой записи хроматограмм, в том числе получение разностных хроматограмм и спектральных отношений. В этих случаях хроматографически неразделенные пики можно выделить количественно вычитанием стандартного сигнала из сигнала пробы.

В связи с вышеизложенным, применение УФ детекторов с дейтериевой лампой в качестве источника света и набором широкополосных фильтров позволяет выпускать недорогие 2-х - 4-хволновые детекторы с выбором длин волн в диапазоне 200-300 нм.

Дополнительные возможности в детектировании дают спектрофотометрические детекторы, позволяющие работать в многоволновом режиме. Такие детекторы предназначены для фотометрирования элюата, выходящего из хроматографической колонки при различных длинах волн, например, в спектральном диапазоне 190-360 нм. Спектрофотометрический детектор состоит из источника света, монохроматора и фотометра. В качестве источника света применима дейтериевая лампа. Изменение длины волны осуществляется поворотом дифракционной решетки монохроматора с помощью шагового двигателя. Монохроматический световой пучок, управляемый вибратором, поочередно проходит через рабочую и сравнительную проточные ячейки. На мониторе ВЭЖХ прибора фиксируется хроматограмма при нескольких аналитических длинах волн, в остановленном потоке имеется возможность зарегистрировать спектр поглощения индивидуального сорбата.


1. Никотиновая кислота (витамин РР)
2. Тиамин (витамин B1)
3. Аскорбиновая кислота (витамин C)
4. Пиродоксин (витамин В6)
5. Цианокобаламин (витамин В12)
6. Рибофлавин (витамин В2)

Хроматограмма стандартной смеси водорастворимых витаминов.
Колонка: Synergi Hydro-RP 150х4.6 мм 4 мкм; защитная колонка: SecurityGuard C18 Aq 4x3.0 мм; подвижная фаза: А - 1% H3PO4 в воде, B - ацетонитрил; градиент: A/B (97:3) – 1 мин, A/B (55:45) – за 8 мин, A/B (10:90) – за 1 мин, A/B (10:90) – 4 мин, A/B (97:3) – за 0.5 мин, A/B (97:3) – 6.5 мин; расход: 0.9 мл/мин; объем пробы: 20 мкл; детектирование: спектрофотометрическое, длина волны 254 нм.

Одним из перспективных направлений развития фотометрических детекторов является применение фотодиодной матрицы. В таких детекторах непрерывное излучение источника проходит через проточную рабочую ячейку и попадает на дифракционную решетку. Луч отклоняется и фокусируется на плоскости, где расположена фотодиодная матрица, состоящая из 200-250 элементарных фотодиодов. Детектор выдает информацию сразу обо всем диапазоне длин волн 190-600 нм с дискретностью 2-5 нм в течение 10 мс. В связи с тем, что при регистрации спектра создается большой массив информации, обработка и запись спектров проводится с помощью быстродействующих компьютера и регистратора. Фотодиодные матричные детекторы позволяют получить за время одного анализа до 200-250 хроматограмм при разных длинах волн или трехмерную спектрохроматограмму, в которой по одной оси откладывается время удерживания, по другим - оптическая плотность и длина волны. Замечательная особенность детекторов на фотодиодной матрице заключается в том, что они позволяют проводить количественные оценки даже в случае, когда хроматографические пики не разделяются и перекрываются на всех длинах волн.

К фотометрическим детекторам относится также детектор, работа которого основана на поглощении света в инфракрасной области спектра. Некоторые функциональные группы органических соединений имеют характеристические частоты в ИК области, поэтому инфракрасные детекторы пригодны для идентификации органических соединений. Одним из основных условий работы этих детекторов является прозрачность применяемых растворителей в ИК области спектра. Наиболее подходящими, но относительно редко применяемыми в хроматографической практике, растворителями являются СCl4, СНСl3 и CS2. Адсорбция ИК излучения может быть использована как для селективного, так и неселективного детектирования. Если ранее детекторы этого типа применяли главным образом в эксклюзионной хроматографии с колонками большого диаметра, то в настоящее время они все шире внедряются в ВЭЖХ. Свет от источника в детекторе проходит через обтюратор и диск с укрепленными на нем тремя интерференционными фильтрами на диапазоны 2.5-4.5, 4.5-8.0 и 8.0-14.5 мкм. Диск вращается, и любой из фильтров может быть легко установлен на пути луча света. Монохроматический ИК свет после фильтра проходит через щель и затем через ячейку детектора, которая обычно имеет длину оптического пути близкую к 1.0 мм. Прошедший ячейку свет попадает на термоэлектрический детектор, сигнал которого усиливается усилителем и передается на регистрирующее устройство.

Для всех соединений, имеющих одинаковые функциональные группы, показания ИК детектора примерно одинаковы. В связи с независимостью показаний от молекулярной массы анализируемых соединений, этот детектор имеет значительные преимущества по сравнению, например, с рефрактометрическим детектором. Его молярные показания практически постоянны. Детектор достаточно стабильно работает при повышенных температурах ячейки (до 150 °С). В оптимальных условиях он может чувствовать около 1 мкг вещества с М=300, содержащего группу ОН и на длине волны 3.4 мкм. Более сильно абсорбирующие ИК излучение функциональные группы обеспечивают более высокую чувствительность, которая, однако, в среднем не превышает чувствительность рефрактометрического детектора.

Имеются ЖХ системы, объединяющие жидкостный хроматограф с ИК-спектрометром, использующим преобразования Фурье. Такая система позволяет одновременно записывать несколько хроматограмм на ряде выбранных оператором полосах ИК спектра. Она позволяет анализировать органические вещества на уровне 1 мкг и служит для идентификации компонентов пробы, причем не полностью разделенные хроматографические пики могут быть разрешены с помощью программного обеспечения.

Для фотометрических детекторов в настоящее время подбираются новые источников излучения, совершенствуются конструкции проточных ячеек, регистрация и обработки сигналов выполняется на компьютерах при помощи все более мощных программных продуктов.

 
  Тема: Фотометрия в видимой области спектра Фотометрия, раздел прикладной физики, занимающийся измерениями света. С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от ~0,38 до ~0,78 мкм, причем самым ярким представляется излучение с длиной волны ок. 0,555 мкм (желто-зеленого цвета). Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условностей. В 1931 Международная комиссия по освещению (МКО) ввела понятие «стандартного наблюдателя» как некоего среднего для людей с нормальным восприятием. Этот эталон МКО – не что иное, как таблица значений относительной световой эффективности излучения с длинами волн в диапазоне от 0,380 до 0,780 мкм через каждые 0,001 мкм. Яркость, измеренная в соответствии с эталоном МКО, называется фотометрической яркостью или просто яркостью. Фотометрические величины. Поток световой энергии измеряется в люменах. Определить световой поток в 1 лм невозможно, не обращаясь к светящимся телам, и основной мерой света долгое время была «свеча», которая считалась единицей силы света. Настоящие свечи уже более века не используются в качестве меры света, так как с 1862 стала применяться специальная масляная лампа, а с 1877 – лампа, в которой сжигался пентан. В 1899 в качестве единицы силы ответа была принята «международная свеча», которая воспроизводилась с помощью поверяемых электрических ламп накаливания. В 1979 была принята несколько отличающаяся от нее международная единица, названная канделой (кд). Кандела равна силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540Ч1012 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Протяженный источник света или освещенный предмет характеризуется определенной яркостью (фотометрической яркостью). Если сила света, испускаемого 1 м2 такой поверхности в данном направлении, равна 1 кд, то ее яркость в этом направлении равна 1 кд/м2. (Яркость большинства тел и источников света в разных направлениях неодинакова.) Виды фотометрических измерений. Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами. Общие методы фотометрии. Существуют два общих метода фотометрии: 1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости; 2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода – вакуумные фотоэлементы, полупроводниковые фотодиоды и т.д. При обоих методах для того, чтобы результаты имели универсальную значимость, условия наблюдения (или работы приборов) должны быть такими, чтобы фотометр реагировал на разные длины волн в точном соответствии со «стандартным наблюдателем» МКО. Важно также, чтобы световой выход лампы не изменялся в ходе измерений. Для стабилизации и измерения тока и напряжения в таких условиях обычно требуется довольно сложная электрическая аппаратура. В самых точных фотометрических измерениях приходится стабилизировать ток через лампу с точностью до (2 – 3)Ч10–3%. Визуальная фотометрия. История визуальной фотометрии начинается с П.Бугера (1698–1758), замечательного ученого, который в 1729 изобрел способ сравнения двух потоков света и сформулировал почти все основные принципы фотометрии. И.Ламберт (1728–1777) далее систематизировал теорию фотометрии, и дальнейшее ее развитие шло в основном по линии совершенствования методов. В настоящее время визуальная фотометрия применяется ограниченно – при измерении весьма слабых световых потоков, когда трудно однозначно интерпретировать результаты физической фотометрии. Физическая фотометрия. Начало физической фотометрии положили Ю.Эльстер и Г.Гейтель, открывшие в 1889 фотоэффект. В 1908 Ш.Фери разработал электрический фотометр, чувствительность которого к разным длинам волн была близка к чувствительности человеческого глаза. Но лишь в 1930-х годах, после усовершенствования вакуумных фотоэлементов и изобретения селенового фотодиода, физическая (электрическая) фотометрия стала широко применяемым методом, особенно в промышленных лабораториях. Приборы: поглощение света измеряют при помощи приборов с фотоэлементом. Такие приборы называют фотоэлектроколориметрами (ФЭК). В отличии от визуального способа, с помощью ФЭК можно непосредственно измерить ослабление интенсивности первоначального светового потока. Поэтому нет необходимости каждый раз готовить стандартный раствор. Обычно при работе с ФЭК перед выполнением анализов составляют калибровочный график по серии стандартных растворов. Калибровочным графиком пользуются для многих определений, что очень удобно для массовых однотипных анализов. Если поглощение света измеряют с помощью ФЭК, такой способ называют фотоколориметрическим анализом. наиболее совершенным, хотя и более сложным прибором является спектрофотометр. В спектрофотометре ослабление интенсивности светового потока измеряется также с помощью фотоэлементов. Однако в спектрофотометре имеется призма или дифракционная решётка, а также щель. Это позволяет выделить узкий участок спектра, именно тот, с которым «оптически реагирует» окрашенное соединение. Известно очень мало «серых веществ», поглощающих свет равномерно во всех участках спектра. Большинство же окрашенных веществ поглощает преимущественно какой-нибудь один участок спектра. Поэтому измерение при длине волны, соответствующей максимуму спектра поглощения, увеличивает чувствительность. Кроме того, облегчается определение одного окрашенного соединения в присутствии другого, иначе окрашенного; в частности, при работе со спектрофотометром значительно улучшаются результаты фотометрического определения с применением окрашенных реактивов. Основные приёмы фотометрических измерений Метод градуировочного графика. В соответствии с законом Бугера – Ламберта – Бэра график в координатах А – с должен быть линеен и прямая должна проходить через начало координат. Для построения такого графика достаточно одной экспериментальной точки. Однако градуировочный график обычно строят не менее чем по трём точкам, что повышает точность и надёжность определений. При отклонениях от закона Бугера – Ламберта – Бэра, т. е. при нарушении линейной зависимости A от c, число точек на графике должно быть увеличено. Применение градуировочных графиков является наиболее распространённым и точным методом фотометрических измерений. Основные ограничения метода связаны с трудностями приготовления эталонных растворов и учётом влияния так называемых третьих компонентов, т.е компонентов, которые находятся в пробе, сами не определяются, но на результат влияют. Метод молярного коэффициента поглощения. При работе по этому методу определяют оптическую плотность нескольких стандартных растворов Aст, для каждого раствора рассчитывают и полученное значение ε усредняют. Затем измеряют оптическую плотность анализируемого раствора Ax и рассчитывают концентрацию cx по формуле: Ограничением метода является обязательное подчинение анализируемой системы закону Бугера – Ламберта – Бэра, по крайней мере, в области исследуемых концентраций. Метод добавок. Этот метод применяют при анализе растворов сложного состава, так как он позволяет автоматически учесть влияние «третьих» компонентов. Сущность его заключается в следующем. Сначала определяют оптическую плотность Ax анализируемого раствора, содержащего определяемый компонент неизвестной концентрации cx , а затем в анализируемый раствор добавляют известное количество определяемого компонента (сст) и вновь измеряют оптическую плотность Ax+ct . Оптическая плотность Ax анализируемого раствора равна: (17) А оптическая плотность анализируемого раствора с добавкой стандартного: (18) Сравнение уравнений (17) и (18) даёт: Отсюда находим концентрацию анализируемого раствора: Концентрацию анализируемого вещества в методе добавок можно найти также по графику в координатах Ax+ст=f(cст). Уравнение (18) показывает, что если откладывать Ax+ct как функцию сст , то получится прямая, экстраполяция которой до пересечения с осью абсцисс даст отрезок, равный - cx . Аппаратура В любой фотометрической аппаратуре различаются следующие основные узлы: источник света; монохроматизатор света; кюветы; узел определения интенсивности света. Узел источника света состоит из собственного источника света, стабилизатора напряжения и в некоторых случаях контрольных приборов – амперметра и вольтметра для контроля постоянства силы тока и напряжения. В некоторых простейших конструкциях колориметров, например, КОЛ-52, фотометр ФМ и др., стабилизаторы и контрольные приборы отсутствуют. В качестве источников света в зависимости от используемой области спектра применяют различные приборы. Для получения света далёкой ультрафиолетовой области 220-230 нм используют водородную лампу или лампу накаливания для области близкого ультрафиолета и видимой части спектра 320 – 800 нм. В иностранных спектрофотометрах для этой цели применяют вольфрамовые и дейтериевые разрядные лампы. Для получения света видимой области спектра применяют обычные лампы накаливания. Для получения света инфракрасной области спектра применяют глобар-стержень из карбида кремния или штифт Нернста – стержень из смеси окислов редкоземельных элементов. Эти стержни при накаливании их электрическим током до 1200 – 20000С испускают интенсивный поток инфракрасных лучей. При всех фотометрических измерениях необходим устойчивый поток световых лучей. Это обеспечивается в первую очередь стабильным режимом накаливания. Поэтому лучшие модели фотометрических приборов обязательно снабжены стабилизатором напряжения, налагаемого на источник лучистого потока. Контроль за работой стабилизатора целесообразно вести путём измерения силы тока, проходящего через осветитель, или напряжения, которое на него подаётся. В некоторых случаях, когда эти приборы отсутствуют в фабричных моделях, их подсоединяют дополнительно. Кроме того, за стабильностью работы осветителя можно наблюдать и при помощи узла определения интенсивности света. Монохроматизация света может быть осуществлена при помощи: светофильтров призм дифракционных решёток Светофильтрами называются среды, способные пропускать лишь определённые области спектра. Обычно в фотоколориметрах используются в качестве светофильтров стёкла. Зная максимум поглощения вещества, можно выбрать такой светофильтр, который пропускал бы только лучи, поглощаемые раствором, и задерживал бы все остальные. Чаще всего удаётся только приблизительно выделить при помощи светофильтра нужную область спектра. В некоторых конструкциях, например в монохроматоре СФ-9, применяется двойная Монохроматизация. Сначала световой поток монохроматизируется при помощи кварцевой призмы, а затем более тонкая Монохроматизация достигается при помощи дифракционной решётки. В узел монохроматизации входят также ряд линз для усиления пучка света, диафрагмы для выделения узкого пучка монохроматического света, зеркала и призмы для изменения направления светового ручка и другие детали, не имеющие принципиального значения. Сюда же относятся механизмы для поворота призм и решёток. В некоторых конструкциях они связаны с самописцами для записи фототоков, благодаря чему в процессе измерения оптической плотности получают одновременно спектрофотометрическую кривую зависимости оптической плотности от длины волны. Узел кювет наименее сложный по устройству. Кюветы должны быть изготовлены из материала, хорошо пропускающего лучи света, интенсивность которых измеряется. Для лучей видимой области спектра – это стекло, для ультрафиолетовых лучей – кварц. При работе с инфракрасными лучами применяют кюветы со стенками из плавленого хлорида серебра, часто вместо растворов исследуемых веществ применяют таблетки из этих веществ с бромидом калия. Кюветы бывают самых разнообразных форм: прямоугольные, цилиндрические, в виде пробирок, кюветы с быстрым удалением исследуемого раствора и другие. Фотоумножители. Значительное повышение чувствительности фотоэлементов может быть достигнуто применением фотоумножителей. В этом приборе пучок света, попадая через окошко на катод 1, выбивает из него электроны, которые под влиянием наложенного напряжения отбрасываются на катод 2, выбивая из него новые электроны; возросшее число электронов попадает на катод 3 и так далее. В результате поток электронов в фотоумножителе сильно возрастает. Спектральная характеристика фотоумножителя зависит от природы катода, а чувствительность достигает 6000 – 10000 мкА/лм. В узел оценки интенсивности светового потока входят также различного типа диафрагмы для ослабления светового потока (оптическая компенсация).  
  Тема: Тонкослойная хроматография Тонкослойная хроматография (ТСХ) является планарной разновидностью жидкостной хроматографии, в которой подвижная фаза (ПФ) движется в пористой среде слоя адсорбента.       Общие сведени Процесс подобен бумажной хроматографии, но его преимуществом является большая скорость анализа, более высокое качество разделения, и возможность выбора одной из неподвижных фаз, обладающей наиболее подходящими свойствами. В настоящий момент тонкослойная хроматография (ТСХ) является одним из основных методов анализа смесей органических веществ в научных лабораториях и полностью вытеснил бумажную хроматографию. Техника     Пластина с нанесенными каплями образцов (смесь красного и синего компонента) в процессе разделения Варианты тонкослойной хроматографии Самым простым вариантом планарной хроматографии является бумажная хроматография, когда разделение производят с использованием специальной бумаги. Для разделения используются пластины на основе оксида алюминия и силикагеля. Наиболее распространены пластины на основе силикагеля. Оксид алюминия и силикагель, как правило, размещается на стеклянной, металлической или пластиковой основе. В ряде случаев к сорбенту добавляется флуоресцентный индикатор синего или зелёного цвета.     Хроматограмма 10 эфирных масел, проявлена ванилином. Также существуют NH2-, CN-, ДИОЛ, и RP модифицированные сорбенты для анализа веществ не разделяющихся на силикагелях напрямую. Разделение, как правило, производится в специальных герметичных камерах для ТСХ. Препаративная и аналитическая ТСХ Аналитическая ТСХ является качественным методом анализа веществ. Необходимо помнить, что интенсивность цвета пятен далеко не всегда является даже приблизительной количественной характеристикой. Такая оценка возможна при использовании универсальных проявителей, тогда детектирование производится визуально либо с помощью денситометра. Препаративная ТСХ является методом выделения вещества или группы близких веществ из смеси. В этом случае смесь наносится на старт в виде сплошной полосы. Далее отрезается край пластины (или закрывается вся остальная часть) и производится проявление. Часть пластины, соответствущая целевому веществу соскребается, вещество отделяется от адсорбента. Препаративную ТСХ следует использовать, если в лаборатории нет высокоэффективного жидкостного хроматографа (ВЭЖХ) Фотогалерея · Развитие процесса хроматографирования во времени:  
  Тема: ВЭЖХ, ГХ Высокоэффективная жидкостная хроматография (ВЭЖХ, англ. HPLC, High performance liquid chromatography) — один из эффективных методов разделения сложных смесей веществ, широко применяемый как в аналитической химии, так и в химической технологии. Основой хроматографического разделения является участие компонентов разделяемой смеси в сложной системе Ван-дер-Ваальсовых взаимодействий (преимущественно межмолекулярных) на границе раздела фаз. Как способ анализа, ВЭЖХ входит в состав группы методов, которая, ввиду сложности исследуемых объектов, включает предварительное разделение исходной сложной смеси на относительно простые. Полученные простые смеси анализируются затем обычными физико-химическими методами или специальными методами, созданными для хроматографии. Принцип жидкостной хроматографии состоит в разделении компонентов смеси, основанном на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна (элюент). Отличительной особенностью ВЭЖХ является использование высокого давления (до 400 бар) и мелкозернистых сорбентов (обычно 3—5 мкм, сейчас до 1,8 мкм). Это позволяет разделять сложные смеси веществ быстро и полно (среднее время анализа от 3 до 30 мин). Метод ВЭЖХ находит широкое применение в таких областях, как химия, нефтехимия, биология, биотехнология, медицина, пищевая промышленность, охрана окружающей среды, производство лекарственных препаратов и во многих других. По механизму разделения анализируемых или разделяемых веществ ВЭЖХ делится на адсорбционную, распределительную, ионообменную, эксклюзионную, лигандообменную и другие. Следует иметь в виду, что в практической работе разделение часто протекает не по одному, а по нескольким механизмам одновременно. Так, эксклюзионное разделение бывает осложнено адсорбционными эффектами, адсорбционное — распределительными, и наоборот. При этом чем больше различие веществ в пробе по степени ионизации, основности или кислотности, по молекулярной массе, поляризуемости и другим параметрам, тем больше вероятность проявления другого механизма разделения для таких веществ. Нормально-фазовая ВЭЖХ Неподвижная фаза более полярна, чем подвижная, поэтому в составе элюента преобладает неполярный растворитель: · Гексан:изопропанол = 95:5 (для малополярных веществ) · Хлороформ:метанол = 95:5 (для среднеполярных веществ) · Хлороформ:метанол = 80:20 (для сильнополярных веществ) Обращённо-фазовая ВЭЖХ Неподвижная фаза менее полярна, чем подвижная, поэтому в составе элюента почти всегда присутствует вода. В этом случае всегда можно обеспечить полное растворение БАС в подвижной фазе, почти всегда возможно использовать УФ-детектирование, почти все подвижные фазы взаимно смешиваются, можно использовать градиентное элюирование, можно быстро переуравновесить колонку, колонку можно регенерировать. Обычными элюентами для обращенно-фазовой ВЭЖХ являются: · Ацетонитрил:вода · Метанол:вода · Изопропанол:вода Матрицы для ВЭЖХ В качестве матриц в ВЭЖХ используются неорганические соединения, такие как оксид кремния (силикагель) или оксид алюминия, либо органические полимеры, такие как полистирол (сшитый дивинилбензолом) или полиметакрилат. Силикагель, конечно, в настоящее время общепризнан. Основные характеристики матрицы: · Размер частиц (мкм); · Размер внутренних пор (Å, нм). Получение силикагеля для ВЭЖХ: 1. Формование микросфер поликремневой кислоты; 2. Сушка частиц силикагеля; 3. Воздушное сепарирование. Частицы сорбента: · Регулярные (сферические): выше устойчивость к давлению, выше стоимость; · Несферические: ниже устойчивость к давлению. Размер пор в ВЭЖХ — один из наиболее важных параметров. Чем меньше размер пор, тем хуже их проницаемость для молекул элюируемых веществ. А следовательно, тем хуже сорбционная емкость сорбентов. Чем крупнее поры, тем, во-первых, меньше механическая устойчивость частиц сорбента, а, во-вторых, тем меньше сорбционная поверхность, следовательно, хуже эффективность. Прививки неподвижной фазы Нормально-фазовая ВЭЖХ: · Неподвижная фаза с пропилнитрильной прививкой (нитрильной); · Неподвижная фаза с пропиламинной прививкой (аминной). Обращенно-фазовая ВЭЖХ: · Неподвижная фаза с алкильной прививкой; · Неподвижная фаза с алкилсилильной прививкой. Энд-кэппирование — защита непривитых участков сорбента дополнительной прививкой «маленькими» молекулами. Гидрофобный энд-кэппинг (С1, С2): выше селективность, хуже смачиваемость; гидрофильный энд-кэппинг (диол): ниже селективность, выше смачиваемость. Детекторы для ВЭЖХ · Ультрафиолетовый · Фотодиодно-матричный · Флуориметрический · Электрохимический · Рефрактометрический · Масс-селективный Газовая хроматография Газовая хроматография — разновидность хроматографии, метод разделения летучих компонентов, при котором подвижной фазой служит инертный газ (газ-носитель), протекающий через неподвижную фазу с большой поверхностью. В качестве подвижной фазы используют водород, гелий, азот, аргон, углекислый газ. Газ-носитель не реагирует с неподвижной фазой и разделяемыми веществами. Различают газо-твёрдофазную и газо-жидкостную хроматографию. В первом случае неподвижной фазой является твёрдый носитель (силикагель, уголь, оксид алюминия), во втором — жидкость, нанесённая на поверхность инертного носителя. Газо-жидкостная хроматография — разделение газовой смеси вследствие различной растворимости компонентов пробы в жидкости или различной стабильности образующихся комплексов. Неподвижной фазой служит жидкость, нанесенная на инертный носитель, подвижной — газ. Разделение основано на различиях в летучести и растворимости (или адсорбируемости) компонентов разделяемой смеси. Этот метод можно использовать для анализа газообразных, жидких и твёрдых веществ с молекулярной массой меньше 400, которые должны удовлетворять определённым требованиям, главные из которых — летучесть, термостабильность, инертность, лёгкость получения. Этим требованиям в полной мере удовлетворяют, как правило, органические вещества, поэтому газовую хроматографию широко используют как серийный метод анализа органических соединений. Оборудование для газовой хроматографии Главным прибором для этого метода исследований является газовый хроматограф:
 
Схема газового хроматографа
1 — источник газа-носителя (подвижной фазы) 2 — регулятор расхода газа носителя 3 — устройство ввода пробы 4 — хроматографическая колонка в термостате 5 — детектор 6 — электронный усилитель 7 — регистрирующий прибор (самописец, компьютер) 8 — расходомер

– Конец работы –

Эта тема принадлежит разделу:

ДНЕВНИК Производственной практики

Регулятор расхода газа... Предназначение этого компонента газового хроматографа контроль расхода газа... Устройство ввода пробы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производственной практики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Источник газа-носителя
Чаще всего это — баллон со сжатым или сжиженным газом, который обычно находится под большим давлением (до 150 атмосфер). Чаще всего при хроматографии используют гелий, реже азот, ещё реже водород и

Хроматографические колонки
Под колонкой подразумевается сосуд, длина которого значительно больше диаметра. Для газовой хроматографии обычно используют U-образные или спиральные колонки. Внутренний диаметр колонок — 2-15 мм,

Детекторы
Детекторы предназначены для непрерывного измерения концентрации веществ на выходе из хроматографической колонки. Принцип действия детектора должен быть основан на измерении такого свойства аналитич

Храктеристика работы студента
На студентку: Имашпаевой Меруерт Даркановне, группа 403, 4 курса фамацевтичекого факультета КазНМУ им С.Д. Асфендиярова, проходившей Производственную практику с 04.07.2013 г. по 20.07.2013

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги