рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Автоматизированные консультативные системы для помощи в принятии решений на основе интеллектуального (экспертного) подхода

Автоматизированные консультативные системы для помощи в принятии решений на основе интеллектуального (экспертного) подхода - раздел Медицина, МЕДИЦИНСКАЯ ИНФОМАТИКА КАК НАУКА. СТАНДАРТНЫЕ ПРИКЛАДНЫЕ ПРОГРАММНЫЕ СРЕДСТВА В РЕШЕНИИ ЗАДАЧ МЕДИЦИНСКОЙ ИНФОРМАТИКИ Искусственный Интеллект — Это Область Компьютерной Науки, Занимающаяся, По Оп...

Искусственный интеллект — это область компьютерной науки, занимающаяся, по определению Дж. Ф.Люгера (Люгер Дж.Ф. Искусственный интеллект: стратегии и методы решения сложных проблем: пер. с англ. / Дж.Ф.Люгер. — М.: Изд. дом «Вильяме», 2003), «автоматизацией разумного поведения» на основе исполь­зования знаний, получаемых от экспертов или из литературных источников.

Диагностическое заключение врача представляет собой результат логических умозаключений, базирующихся на научных знаниях, субъективном опыте, полученном в процессе работы, и здравом смысле. Принципы математической статистики не всегда эффек­тивны при анализе клинических данных, в особенности при ред­ких заболеваниях, когда имеются малые выборки. Поэтому наряду с обработкой данных широкое применение нашла и «обработка» знаний.

Под знаниями подразумеваются закономерности предметной области (принципы, связи, законы), полученные в результате теоретических исследований, практической деятельности и про­фессионального опыта, позволяющие специалистам ставить и ре­шать задачи в этой области. Если знания отражены в литературе, системы, построенные на основе их использования, называют интеллектуальными. Если же знания были получены в процессе собеседований с высококвалифицированными специалистами (экспертами в конкретной области медицины), системы называ­ют экспертными.

Для того чтобы знания можно было использовать при постро­ении систем, их формализуют. Под формализацией понимается однозначное (иногда многозначное) описание клинических про­явлений заболеваний (включающее дифференциально значимые признаки и их сочетания для отдельных или групп заболеваний), профессиональных навыков, технологий, методов принятия ре­шений, на основе которого возможно последующее моделирова­ние деятельности врача и использование знаний в автоматизиро­ванных системах, в данном случае экспертных.

Знания предметной области по источникам можно разделить на фактические и эвристические. Фактические знания — хорошо известные в данной предметной области факты, описанные в спе­циальной литературе. Эвристические знания основаны на собствен­ном опыте специалиста-эксперта, пользоваться ими нужно ос­мотрительно, но именно они определяют эффективность ЭС.

Экспертная система — это программа для компьютера, опери­рующая с формализованными знаниями врачей-специалистов и имитирующая логику человеческого мышления, основанную на знаниях и опыте экспертов с целью выработки рекомендаций или решения проблем. Одним из важных свойств ЭС является ее спо­собность объяснить понятным для пользователя образом, как и почему принято то или иное решение. Экспертные системы эф­фективны в специфических областях, таких как медицина, в ко­торых существует много вариантов проявлений заболеваний и поэтому отсутствуют однозначные критерии диагностики и лече­ния, в связи с чем важен эмпирический опыт специалистов и качество принятия решения зависит от уровня экспертизы. По областям применения можно выделить ЭС для диагностики, ин­терпретации данных, лечения, прогнозирования и мониторинга за состоянием больных. По данным исследования, проведенного в США в середине 1990-х гг., медицина является одним из основ­ных потребителей ЭС — около 23 % всех имеющихся.

Пользователем ЭС обычно является специалист в той же пред­метной области, для которой разработана система, но его ква­лификация недостаточно высока по конкретному профилю па­тологии, в связи с чем он нуждается в поддержке принятия ре­шений. Пользователями медицинских ЭС могут быть также врачи смежных специальностей, общей практики, ординаторы, ин­терны.

Как разработчики, так и пользователи предъявляют к меди­цинским ЭС ряд требований.

1. Система должна обеспечивать высокий уровень решения за­дач в своей предметной области.

2. «Поведение» ЭС (задаваемые врачу вопросы, рекомендации, логика работы и принятия решений) должно моделировать пове­дение грамотного врача.

3. Система должна объяснять получаемые решения, используя конструкции, понятные врачу.

4. Созданные ЭС должны обеспечивать возможность модифика­ции при обновлении медицинских знаний по данной предметной области.

Близки к процессу дифференциальной диагностики заболева­ний предложенные В. К. Финном интеллектуальные системы на основе ДСМ-рассуждений (ДСМ — по инициалам Джона Стюар­та Милля), использующие понятия аргументов и контраргумен­тов, т.е. утверждений «за» или «против» диагноза при наличии определенных признаков (показателей).

В ЭС реализуются четыре базовых функции:

1) приобретение (извлечение) знаний;

2) представление знаний;

3) управление процессом поиска решения;

4) разъяснение принятого решения.

Приобретение знаний — это восприятие опыта решения про­блемы от источника знаний (эксперт, литература) и преобразо­вание его в вид, который позволяет использовать эти знания в экспертной или интеллектуальной системе. Для извлечения зна­ний необходимы усилия не только эксперта, знающего предмет­ную область, но и когнитолога или инженера по знаниям (knowledge engineer) либо аналитика, владеющего методами извлечения, струк­туризации и организации знаний предметной области. Извлече­ние знаний может происходить в процессе собеседований между инженером по знаниям и экспертом в конкретной проблемной области или в результате взаимодействия эксперта со специаль­ной программой, замещающей в этом случае когнитолога.

Представление знаний — описание приобретенных знаний с помощью машинного языка (языка представления знаний), вклю­чая проверку на корректность и полноту. Существует несколько языков представления знаний. Самыми распространенными из них в настоящее время являются продукционные модели, фреймы, семантические сети.

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа «Если (условие), то (действие)». При выполнении условия реализуется действие.

К достоинствам продукционных моделей можно отнести про­стоту и наглядность представления знаний, их модульность, что обеспечивает легкую модификацию имеющихся и добавление но­вых правил. Однако у этого подхода имеются и недостатки. Глав­ным из них является ограниченность его использования для пред­ставления знаний, которые выходят за рамки утверждений типа «Если..., то...».

Фрейм (от англ .frame — рамка) — структура данных для пред­ставления стереотипных знаний. Он представляет собой логиче­скую запись, включающую поля (подструктуры) для хранения информации. Эти поля называют слотами (от англ. slot — щель). Некоторые слоты могут хранить неизменную информацию. Слоты могут также содержать перечень возможных значений, присоеди­ненные процедуры (позволяющие производить операции для по­лучения значения этого слота) или другие фреймы. В каждом сло­те задается условие, которое должно выполняться при установле­нии соответствия между значениями. Соединив множество фрей­мов, являющихся отношениями, можно построить фреймовую систему.

Использование фреймов для представления знаний позволяет получить описание проблемной области в виде связанных, иерар­хически упорядоченных, крупных информационных структур.

Семантические сети состоят из узлов, представляющих кон­цепты (понятия), и связей — отношений между ними. Все узлы сети определяются через другие узлы.

Отношения между концептами могут быть двух типов. Первый тип отношений может быть сформулирован как отношения «от общего к частному», чему могут соответствовать фразы «включает в себя», «состоит из», «содержит». Второй тип — это отношение «от частного к общему», чему соответствуют формулировки «яв­ляется частью», «характерно для». Частным случаем семантиче­ских сетей являются семантические пороговые иерархические сети. Они устроены таким образом, что «переключение» на узлы более высоких по иерархии уровней происходит только после того, как будет преодолен заданный порог.

Особенностью семантической сети, являющейся и ее недостат­ком, является ее целостность — невозможность разделить базу фактических знаний и механизм поиска решения.

Каждая модель представления знаний имеет свои достоинства и недостатки, поэтому при решении клинических задач в насто­ящее время обычно используется не одна, а несколько взаимно дополняющих моделей представления знаний: продукционная модель, фреймовая структура.

Управление процессом поиска решения — это осуществление до­ступа к знаниям, порядок и способ их использования в процессе формирования решения.

Разъяснение принятого решения — важная базовая функция, обеспечивающая высокий уровень доверия к ЭС. Данная функция позволяет врачу понять логику, оценить качество и безопасность решений, предлагаемых системой, и сделать окончательный обо­снованный выбор.

Экспертная система имеет структуру, состоящую из набора определенных блоков (рис. 4).

База знаний (БЗ) является ядром экспертной или интеллекту­альной системы. Это совокупность знаний предметной области, записанная на машинный носитель в форме, понятной пользова­телю и эксперту.

Создание БЗ является основной задачей когнитолога и глав­ным этапом разработки ЭС. В функции когнитолога входит не толь­ко опрос экспертов, но и последующее сопоставление и обобще­ние полученной информации, а также ее представление в виде формализованных знаний (совокупности фактов и правил) в фор­ме, пригодной для непосредственного занесения в БЗ. Когнитолог является основным разработчиком базы знаний ЭС. От полно­ты признакового пространства, включая связи симптомов разра­ботанной БЗ, и точности сформулированных алгоритмов вывода зависит качество выносимых ЭС решений.

Разработка БЗ экспертной системы для диагностики и консуль­тативной помощи в принятии решений включает в себя несколь­ко этапов.

1) Формирование эталонного описания основных диагности­ческих заключений. Эталонное описание диагноза — это наиболее полная совокупность характерных признаков анамнеза, текущих клинических симптомов, результатов лабораторных и специаль­ных исследований, присущих конкретному диагнозу. При исполь­зовании в описании весовых коэффициентов признаки могут иметь разные значения, характеризующие их вклад для выдвижения кон­кретной диагностической гипотезы.

Пользователь


– Конец работы –

Эта тема принадлежит разделу:

МЕДИЦИНСКАЯ ИНФОМАТИКА КАК НАУКА. СТАНДАРТНЫЕ ПРИКЛАДНЫЕ ПРОГРАММНЫЕ СРЕДСТВА В РЕШЕНИИ ЗАДАЧ МЕДИЦИНСКОЙ ИНФОРМАТИКИ

В настоящее время в своей профессиональной деятельности врач любой специальности при решении задач медицинской науки и практики обязательно... Предлагаемый учебник принципиально отличается от издавав шихся ранее учебных... В гл дана подробная историческая справка Рассматриваются науки на основе которых зародилась медицинская...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Автоматизированные консультативные системы для помощи в принятии решений на основе интеллектуального (экспертного) подхода

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СПИСОК СОКРАЩЕНИЙ
АИС — автоматизированная информационная система АРМ — автоматизированное рабочее место АС — автоматизированная система АСУ — автоматизированная система управления АЦП — а

Исторический обзор
Прежде чем начать изучать МИ, следует узнать ее историю. Слово «кибернетика» в Древней Греции означало науку об искусстве управления и относилось к управлению кораблями. В СССР в середине ХХ в. киб

Место медицинской информатики в здравоохранении
Информатика как самостоятельная наука появилась в конце XX в. Хотя, как удачно заметил Г. А. Хай (2007), информатика су шествовала с момента возникновения человеческого общества, но не имела этого

Применение текстового редактора в медицинских задачах
В предыдущей главе уже упоминалось, что при решении задач медицинской информатики можно использовать стандартные про­граммные средства, хотя все чаще для этого применяют специ­ально разработанные п

Применение электронных таблиц при работе с медицинскими данными
Табличные процессоры (электронные таблицы) — удобное средство для проведения расчетов, построения диаграмм и ана­лиза данных. Наиболее распространенные электронные таблицы MS Excel имеют бол

Возможности систем управления базами данных при построении информационных систем
Основой многих информационных медицинских систем (ИМС) являются базы данных (БД). База данных — это организованная совокупность данных, предназначенная для длительного хранения во внешней

Программные средства математической статистики
Математическая статистика — универсальный инструмент для анализа любых данных, в том числе экспериментальных клини­ческих и биомедицинских. Но выбираемый метод должен отве­чать поставленной цели и

Особенности медицинских данных
Первым шагом, предваряющим собственно статистический анализ, является исследование типа данных, основными из кото­рых являются количественные и качественные. Качественные данные подразделя

Подготовка, предварительный анализ информации и выбор методов обработки данных
Рассмотрим пример из клинической дисциплины. Постановка задач и планирование исследования. Предпочтитель­ным вариантом является строгий подход, когда до проведения исследо

Методы математической статистики, используемые в клинической практике
Область применения Метод параметрический непараметрический Описательная ста­тистика Вычислени

Использование методов математической статистики для анализа данных
В учебном издании по медицинской информатике было бы из­лишне приводить подробные описания методов математической статистики, тем более что в последние годы вышло достаточно большое количество спец

Интерпретация и представление полученных результатов
В настоящее время написание клинического отчета, научной статьи и тем более диссертации невозможно без грамотного пред­ставления результатов, полученных с помощью методов матема­тической статистики

Понятие телемедицины
Телемедицина и Интернет, не являясь в прямом смысле со­ставными частями медицинской информатики, характеризуются общими тенденциями развития. Создание региональных и федеральных сетей опир

Этапы становления российской телемедицины
На первом этапе становления отечественной телемедицины (1960-1990-е гг.) появились такие достижения, как телеметрическая оценка параметров жизнедеятельности космонавтов, международные телеме

Телеконсультирование, теленаблюдение и телепомощь
Чрезвычайно важно организовывать телемедицинскую консультативную помощь в отношении социально значимых и трудно дифференцируемых заболеваний. Телеконсультации и телеконсилиумы с участием группы вра

Сопутствующей патологии
Необходимо дообследование/

Дистанционное обучение
Дистанционное преподавание все шире распространяется в развитых и развивающихся странах. Оно приобретает особое зна­чение для повышения квалификации в связи с ускорением раз­вития медицинской науки

Медицинские ресурсы сети интернет
Интернет — всемирная ИС, т.е. совокупность разных сетей, построенных на базе протокола TCP/IP (Transmission Control Protocol/Internet P-Protocol), т.е. протокола управления передачей в сети,

Общие требования к информационным медицинским системам
Основным документом, определяющим требования и порядок разработки АС (в том числе медицинских), является техническое задание (ТЗ). Техническое задание на АС может включать следующие под­ра

Значение стандартов в создании и обеспечении взаимодействия информационных медицинских систем
При использовании информационных технологий ключевыми и наиболее сложными для стандартизации являются терминоло­гические проблемы представления и кодирования медицинской информации, а также форматы

Организационное и правовое обеспечение функционирования информационных медицинских систем
Организационное обеспечение представляет собой совокупность организационно-технологических решений, определяющих поря­док взаимодействия работников в условиях функционирования системы. В п

Основные составляющие лечебно-диагностического или оздоровительно-профилактического процесса
Медицинский технологический процесс — это оздоровитель­но-профилактический или лечебно-диагностический процесс (ЛДП) управления организмом (изменением структуры и функ­ций), который реализуется в п

Процесс деятельности медицинского работника как объект информатизации
На современном этапе развития информационных технологий обеспечение нужной информацией (информационное обеспече­ние деятельности) невозможно без компьютеризации учрежде­ния и автоматизации работы п

Моделирование и использование моделей в медицине
Модель — это создаваемое человеком подобие изучаемого объек­та (макет, изображение, схема, карта, словесное описание, мате­матическое представление и т.п.). Метод моделирования состоит в исследован

Медико-технологические системы и их особенности
Медико-технологические системы — это системы, обеспечи­вающие обработку и анализ информации, представленной в элек­тронной форме, для поддержки принятия решений и информа­ционной поддержки медицинс

Автоматизированные системы для обработки медицинских сигналов и изображений
Автоматизированные системы обработки кривых и изображе­ний являются самыми многочисленными среди разработанных систем. Разные авторы называют их по-разному: АС клинико-лабораторных исследований, ме

Автоматизированные системы для консультативной помощи в принятии решений
Среди систем для помощи в принятии решений на основании используемых методов выделяют: · автоматизированные системы для распознавания патологи­ческих состояний методами вычислительной диаг

Автоматизированные системы для распознавания патологических состояний методами вычислительной диагностики
С начала 1960-х гг. при решении задач дифференциальной диаг­ностики использовались методы математической статистики и распознавания образов (под образами понимаются классифици­руемые классы — забол

Автоматизированные гибридные системы для консультативной помощи в принятии решений
Опыт в разработке АС для распознавания патологических со­стояний методами вычислительной диагностики и с использова­нием искусственного интеллекта позволил специалистам в обла­сти медицинской инфор

Автоматизированные системы для управления жизненно важными функциями организма
В отделениях реанимации и интенсивной терапии используют АС для помощи врачу при управлении жизненно важными функ­циями организма или для постоянного интенсивного наблюдения. Большая часть из них п

Основные функции автоматизированного рабочего места медицинского работника
Автоматизированное рабочее место медицинского работника — это комплекс, обеспечивающий ведение БД, обработку инфор­мации и поддержку процессов принятия решений в определен­ной предметной области. А

Особенности интеллектуальных автоматизированных рабочих мест
Интеллектуальное АРМ — это программный продукт, в кото­ром некоторая часть или все модули поддержки процесса приня­тия решений реализованы с использованием систем, основанных на знаниях (экспертных

Специализированные рабочие места
Понятие «типовое АРМ» базируется на общих принципах его построения и функционирования. Это необходимое условие для разработки совместимых АРМ. Такой подход не исключает, одна­ко, того, что в реальн

Автоматизированные рабочие места и современные информационно-компьютерные технологии
При использовании двух или более ПК можно организовать распределенную БД на сети ПК или единую БД на сервере. В этом случае АРМ будет не физическим, а функциональным понятием. Такой подход близок к

Построение и основные функции информационно-технологических систем
Информационно-технологические системы (ИТС) — это си­стемы поддержки медико-технологических процессов и электрон­ного документооборота в процессе деятельности медицинских ра­ботников. К ИТ

Поддержка процесса обследования и лечения в информационно-технологических системах
Информационная поддержка действий медицинского персо­нала возможностями ИТС в процессе обследования и лечения па­циентов включает: · ведение медицинских карт пациентов лечащими врачами и в

Информационно-технологические системы диспансерного наблюдения
Автоматизированные системы диспансерных осмотров населе­ния могут быть как самостоятельными (для поддержки первичной диспансеризации или массовых медицинских осмотров), так и являться составной час

Электронная история болезни
Электронная история болезни (ЭИБ) — это информационная система, обеспечивающая автоматизацию ведения и формирова­ния медицинской документации, оперативный обмен между уча­стниками ЛДП и поддержку и

Информационно-технологические системы отделений лечебных учреждений
Среди разработанных и внедряющихся в настоящее время ИС лечебных отделений наиболее полнофункциональными являются системы отделений реанимации и интенсивной терапии. Это объяс­няется рядом причин,

Регистры (специализированные информационно-технологические системы)
Регистры (специализированные ИТС) служб и направлений медицины — это системы поддержки электронного документо­оборота персональных данных в проблемно-ориентированных об­ластях медицинской деятельно

Права доступа к информации и конфиденциальность медицинских данных
К информации БД медицинских ИТС в силу своей деятель­ности имеют доступ многочисленные пользователи — от врачей (и даже медицинских сестер) до руководителей здравоохранения различного уровня. И это

Концепции разработки информационных систем лечебных учреждений
За рубежом внедрение АИС учрежденческого уровня достаточ­но давно считается совершенно необходимой и естественной со­ставляющей деятельности здравоохранения. В развитых странах АИС ЛПУ разрабатываю

Функциональное назначение учрежденческих систем
Основной целью информатизации ЛПУ является повыше­ние эффективности их деятельности: улучшение качества про­филактического и лечебно-диагностического процессов, сокра­щение времени на их проведение

Общие принципы построения автоматизированных информационных систем ЛПУ
Автоматизированные информационные системы ЛПУ состоят из большого числа подсистем, которые можно объединить в три группы: 1. административные; 2. организационные; 3. меди

Уровни автоматизации современных лечебно-профилактических учреждений
В настоящее время по уровням автоматизации ЛПУ сильно раз­нятся. Можно говорить о трех уровнях автоматизации. Первый уровень автоматизации ЛПУ — это использование в учреждении в соо

Технологические решения
В настоящее время в крупных медицинских учреждениях Рос­сии успешно внедряются несколько десятков различных АИС ЛПУ, разработанных с использованием разных технологических реше­ний. Рассмотрим некот

Структура и функции медицинских информационных систем территориального уровня
Территориальная информационная медицинская система — это интегрированная система сбора, обработки, передачи и хранения данных о состоянии здоровья населения, окружающей среды, мате

Информационно-аналитические и геоинформационные системы в поддержке принятия управленческих решений
Особенностью здравоохранения является его постоянное об­новление, реструктуризация, появление новых критериев, нор­мативов, методик расчета, изменение статистических форм. Это требует особых подход

Информационно-аналитические системы
Информационно-аналитическая система — это система, обес­печивающая наряду с процессами сбора, накопления, хранения, поиска и статистической обработки информации формально-содержате

Географические информационные системы
Географическая информационная (геоинформационная) си­стема (ГИС) — это система визуального представления географически или координатно «привязанной» проблемно-орие

Цели и задачи информационных медицинских систем федерального уровня
Федеральная информационная медицинская система здраво­охранения — это интегрированная система сбора, обработки и хранения данных о состоянии здоровья населения, окружающей природной среды, материал

Принципы и место компьютерного мониторинга здоровья населения в общей системе здравоохранения
В Концепции создания Государственной системы мониторинга здоровья населения России (1996) приведено следующее опре­деление: мониторинг здоровья населения — это система оператив­ного слежения

Федеральные системы мониторинга состояния здоровья
Федеральная информационная система мониторинга состоя­ния здоровья — это комплекс проблемно ориентированных иерар­хических ИМС, включающих регулярно обновляемые персони­фицированные базы медицински

Интеграция информационных систем различных служб и уровней оказания медико-социальной помощи
Создание федеральных ИМС и организация компьютерного мониторинга состояния здоровья населения Российской Федера­ции предполагает последовательное сжатие исходных данных для получения на каждом уров

Понятие электронного здравоохранения
Переход к электронному здравоохранению (e-Health) предпо­лагает построение территориальных и глобальных сетей передачи медицинских данных и создание на этой основе единого инфор­мационного п

Принципы построения единого информационного пространства
Информационное пространство данных медицинского и соци­ального плана для поддержки принятия решений клинического и организационного характера в зависимости от общей направлен­ности включает информа

Подходы и первый опыт электронного здравоохранения
В настоящее время с учетом новых технических возможностей началось создание региональных и моделирование глобальных медицинских систем, позволяющих объединять автономно функ­ционирующие в отдельных

Возможности электронного здравоохранения
Рассматривая понятие «электронное здравоохранение» как си­стему оперативного доступа к персонифицированной информа­ции корпоративных систем или распределенных БД с использова­нием телекоммуникацион

ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ
Автоматизированные рабочие места медицинских работников — комп­лексы, обеспечивающие ведение базы данных, обработку информации и поддержку процессов принятия решений в определенной

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги