рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ВИНТОВОЙ ПОДЪЕМНЫЙ МЕХАНИЗМ

ВИНТОВОЙ ПОДЪЕМНЫЙ МЕХАНИЗМ - раздел Военное дело, ЛЕКЦИИ по дисциплине Проектирование станков и установок оружия и систем вооружения Механизм Вертикальной Наводки, Имеющий В Числе Звеньев Винтовую Пару, Называе...

Механизм вертикальной наводки, имеющий в числе звеньев винтовую пару, называется винтовым подъемным механизмом. Схема такого механизма представлена на рис.7.6. Такие механизмы отличаются простотой конструкции и малой чувствительностью к условиям работы, однако обеспечивают небольшой сектор вертикальной наводки, поэтому они находят применение в пулеметных станках, а также в противотанковых гранатометах и безоткатных орудиях, где достаточен малый сектор вертикального обстрела.

Нарезка винта обычно прямоугольного или трапециидального сечения. Для обеспечения самоторможения передачи угол подъема винтовой линии принимается в пределах 4...6°. Расчетная схема винтового подъемного механизма приведена на рис.7.7.

Pиc. 7.6. Винтовой подъемный механизм:

1 - люлька; 2 - основание люльки; 3 - маточная гайка; 4 - винт.

Pиc. 7.7. Расчетная схема бинтового подъемного механизма.

На этой схеме обозначено:

- центр цапф;

- центр шарнира маточной гайки;

- центр шарнира, связывающего подъемный винт с качающейся частью;

- расстояние между точками и ;

- расстояние между точками и (а и b величины постоянные);

l - рабочая длина винта в данный момент (величина перемен­ная);

U - реакция винта при выстреле;

h - плечо реакции U относительно оси цапф;

и - соответственно угол между отрезками а и b при данном угле возвышения φ и при φ = 0.

Pиc. 7.8. К определению усилия на маховике винтового механизма.

Формула для расчета реакции U, действующей на качающуюся часть при выстреле будет иметь вид

, (7.30)

Найдем зависимость для передаточного числа такого механизма

(7.31)

где - угловая скорость вращения маховика;

- угловая скорость вертикальной наводки.

Рабочая длина винта

. (7.32)

Пусть за время от качающаяся часть повернется на угол , а рабочая длина винта изменится на , тогда дифференцируя (7.32) по переменной , получим

. (7.33)

С другой стороны, из кинематических соображений

, (7.34)

где S - шаг нарезки винта;

п - число оборотов маховика в минуту.

Приравнивая (7.33) и (7.34) и решая полученное равенство относительно , получим

. (7.35)

Тогда передаточное число механизма

. (7.36)

Как видно, передаточное число винтового механизма про­порционально углу θ, т.е. величина переменная, следователь­но, применительно к данному механизму угловая скорость верти­кальной наводки и усилие на маховике Рм также будут пе­ременными. В этом заключается один из недостатков такого ти­па механизмов.

Непосредственно из рис. 7.7 следует, что

, (7.37)

тогда

. (7.38)

Последняя формула используется при графоаналитическом определении передаточного числа.

Максимальное значение передаточного числа

, (7.39)

что непосредственно следует из выражения (7.36).

Усилие Fmaх развиваемое в винтовом подъемном механизме при наводке, может быть определено по следующей приближенной зависимости

, (7.40)

где Jк - момент инерции качающейся части относительно цапф;

ωк - угловая скорость вращения качающейся части;

QK - вес качающейся части;

hmin - плечо силы Rmax относительно оси цапф;

f - коэффициент трения в цапфах;

r - радиус цапф.

Максимальное угловое ускорение может быть опре­делено по следующей приближенной зависимости

где - угловое ускорение на маховике механизма;

- время разгона;

п - число оборотов маховика в минуту в конце периода разгона.

Усилие на маховике винтового подъемного механизма для заполнения наводки определяется из следующих соображений. Представим развертку винтовой линии (рис. 7.8.), и пусть груз весом Fmax поднимается на высоту S', Тогда за один оборот маховика будет произведена работа

,

откуда усилие на маховике винтового механизма

, (7.41)

где rcp - средний радиус нарезки винта;

R - радиус рукоятки маховика;

- угол подъема винтовой линии (по среднему диаметру нарезки винта);

ρ’ - приведенный угол трения в нарезке винта (для трапециидальной нарезки)

где f - коэффициент трения между винтом и маточной гайкой;

β - половина угла профиля трапециидальной нарезки.

Для обеспечения самоторможения необходимо иметь

α < ρ’

при этом КПД .

 

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИИ по дисциплине Проектирование станков и установок оружия и систем вооружения

Федеральное Государственное бюджетное образовательное учреждение... Высшего профессионального образования... Институт Высокоточных систем им В П Грязева...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ВИНТОВОЙ ПОДЪЕМНЫЙ МЕХАНИЗМ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРЕДМЕТ, ЦЕЛИ И ЗАДАЧИ КУРСА.
Развитие военной науки и общего научно-технического про­гресса привело к созданию большого количества разнообразных сис­тем стрелкового вооружения. Известно, что эффективность стрелкового оружия на

КРАТКИЕ ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О РАЗВИТИИ СТАНКОВ И УСТАНОВОК АВТОМАТИЧЕСКИХ МАШИН
Чтобы представить историю развития установок необходимо рассмотреть развитие систем вооружения, которое было изложено в курсе "Конструкции автоматических машин". Поэтому, не останав­ливая

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ
Все станки и установки состоят из двух основных частей (исключение составляют неподвижные авиационные установки, при помощи которых оружие жестко крепится на самолете, наводка же оружия в цель прои

ВЕРТЛЮГИ
Вертлюг предназначен для крепления оружия и сообщения ему вращения вокруг вертикальной и горизонтальной осей. В большинстве случаев (исключение представляет, например, германский станок–са

МЕХАНИЗМЫ ГОРИЗОНТАЛЬНОГО НАВЕДЕНИЯ
(ПОВОРОТНЫЕ МЕХАНИЗМЫ) В существующих установках встречаются следующие разновидности горизонтального наведения. 1) свободное наведение (непосредственным поворотом

МЕХАНИЗМЫ ВЕРТИКАЛЬНОГО НАВЕДЕНИЯ
(ПОДЪЕМНЫЕ МЕХАНИЗМЫ) Вертикальное наведение имеет те же разновидности, что и горизонтальное. В отличие от горизонтального наведения вертикальное наведение чаще п

Углы вертикального наведения
При стрельбе по наземным целям от - до +

ОГРАНИЧИТЕЛИ РАССЕИВАНИЯ
Целый ряд условий боевого применения пулеметов (стрельба в проход и интервалы, стрельба через головы своих войск и т.п.) требует механического ограничения положения оружия на станке в определенных

ВЫРАВНИВАЮЩИЕ МЕХАНИЗМЫ И УСТРОЙСТВА
Нормальное положение станка, обеспечивающее наилучшую меткость, состоит в том, что ось вертлюга должна быть вертикальной. Отклонение оси вертлюга от вертикали приводит к явлению «сваливани

РЕГУЛИРОВОЧНЫЕ МЕХАНИЗМЫ И УСТРОЙСТВА
Исходя из возможностей использования одного и того же станка или установки для решения различных боевых задач, в них предусматриваются различные регулировочные механизмы и устройства, позволяющие п

УРАВНОВЕШИВАНИЕ МОМЕНТА СИЛЫ ТЯЖЕСТИ КАЧАЮЩЕЙСЯ ЧАСТИ
Качающаяся часть установки считается уравновешенной, если ее ось качания проходит через центр тяжести или настолько близко от него (некоторый перевес качающейся части назад в системах с подъемными

АМОРТИЗАТОРЫ
При стрельбе со стороны коробки автоматики на установку действуют силы. Сила, действующая со стороны коробки автоматики на установку в направлении оси канала ствола называется силой отда

КОРОБКОДЕРЖАТЕЛИ
При ленточном питании патронные коробки очень часто закрепляются на установке. Коробкодержатели бывают: 1) с направляющими, в этом случае коробка вдвигается в соответствующие пазы

ПРОЧИЕ МЕХАНИЗМЫ И УСТРОЙСТВА
Помимо механизмов, рассмотренных нами, в станках и установках встречаются следующие механизмы и устройства: 1) приспособления для прицелов, 2) элементы, связанные с удобством рабо

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СТАНКАМ И УСТАНОВКАМ
План лекции: 5.1. Мощность стрельбы. 5.2. Маневренность системы. 5.3. Надежность работы. 5.4. Удобство обслуживания и простота содержания.

МОЩНОСТЬ СТРЕЛЬБЫ
Мощность стрельбы оружия предполагает обеспечение достаточной энергии пули у цели при определенной скорострельности и меткости стрельбы. Она может быть определена по следующей зависимости:

МАНЕВРЕННОСТЬ СИСТЕМЫ
Маневренность системы непосредственно связана с её боевой готовностью и характеризуется огневой маневренностью и подвижностью. Огневая маневренность непосредственно связана с мощностью стр

НАДЕЖНОСТЬ РАБОТЫ
Нежность работы станкового пулемета или ЗПУ характеризуется: - безотказностью работы всех механизмов и устройств при различных условиях службы; - живучестью и долговечностью служб

УДОБСТВО ОБСЛУЖИВАНИЯ И ПРОСТОТА СОДЕРЖАНИЯ
Удобство обслуживания и простота содержания являются важным служебным свойством, так как большая часть всех операций боевого обслуживания пулеметной системы выполняется с помощью механизмов станка

ПРОИЗВОДСТВЕННО-ЭКОНОМИЧЕСКИЕ ТРЕБОВАНИЯ
Важность реализации производственно-экономических требований определяется массовостью применения пулеметного вооружения и большой сложностью многих типов установок. К основным из этих треб

ОБЩИЕ ЗАМЕЧАНИЯ
На корпус оружия при стрельбе действует сила отдачи. Если корпус оружия жестко соединен с установкой, то сила отдачи будет полностью приложена непосредственно к конструктивным элементам установки.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К АМОРТИЗАТОРАМ СТАНКОВ И УСТАНОВОК АВТОМАТИЧЕСКИХ МАШИН
При оценке выгодности амортизаторов автоматического оружия следует учитывать влияние их работы на меткость стрельбы, надежность работы автоматики, удобство обслуживания оружия при стрельбе.

ТИПЫ АМОРТИЗАТОРОВ
Для автоматического оружия нормального и крупного калибра обычно используются амортизаторы пружинного типа. Расположение амортизаторов может быть различным: снизу оружия, сверху, два амортизатора с

ИМПУЛЬСНО-СИЛОВЫЕ ДИАГРАММЫ
В зависимости от импульсно-силовой характеристики и требований, предъявляемых к оружию в отношении темпа, усилия отдачи и величины отката различают несколько схем амортизации автоматического оружия

РАСЧЕТ ПРУЖИНЫ АМОРТИЗАТОРА ПРИ ОТСУТСТВИИ ДЕМПФЕРА
Для установления взаимосвязи силы, действующей на установку, длины отката и времени цикла работы амортизатора рассмотрим простейшую схему амортизации оружия, сводящуюся к поступательному и прямолин

РАСЧЕТ ПРУЖИНЫ АМОРТИЗАТОРА ПРИ ИСПОЛЬЗОВАНИИ ДЕМПФЕРОВ СУХОГО ТРЕНИЯ
Применение в конструкции амортизаторов сухого трения изменяет характер работы амортизатора. Эти изменения могут быть учтены введением соответствующих поправок в параметры, входящие в уравнения пере

НАЗНАЧЕНИЕ ГИДРАВЛИЧЕСКИХ ТОРМОЗОВ ОТКАТА - НАКАТА И ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К НИМ. СУЩНОСТЬ РАБОТЫ ГИДРАВЛИЧЕСКИХ ТОРМОЗОВ
Противооткатные устройства выполняют роль упругой связи оружия со станком и предназначены для уменьшения действия выстрела на станок. Противооткатные устройства состоят из тормоза откатных

КОНСТРУКТИВНЫЕ СХЕМЫ ГИДРАВЛИЧЕСКИХ ТОРМОЗОВ.
В зависимости от конструкции регулирующего устройства, обеспечивавашего заданный закон изменения силы гидравлического сопротивления, различают веретенные, золотниковые, канавочные и шпоночные тормо

ОПРЕДЕЛЕНИЕ УСИЛИЯ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ КАНАВОЧНОГО ТОРМОЗА ОТКАТА
Выведем зависимость для гидравлического сопротивления канавочно-игольчатого тормоза отката при следующих допущения: 1) Жидкость в тормозе отката несжимаемая; 2) Тормоз отката полн

ПРОЕКТИРОВАНИЕ ГИДРАВЛИЧЕСКОГО ТОРМОЗА ОТКАТА
Зная значения ФТО(х) и V(х), полученные при расчете торможенного отката, а также значение конструктивной характеристики тормоза отката СТО, можно из форму

ОПРЕДЕЛЕНИЕ УСИЛИЯ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ КАНАВОЧНО-ИГОЛЬЧАТОГО ТОРМОЗА В НАКАТЕ
  Рассмотрим расчет силы гидравлического сопротивления тор­моза при накате. При накате оружия торможение откатных частей начинается не сразу, а лишь после выбора вакуума в полостях

ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИЖЕНИЯ ОТКАТНЫХ ЧАСТЕЙ ПРИ СВОБОДНОМ ОТКАТЕ
  Свободный откат - это иделизированным откат при действии на откатные части только приведенной силы давления пороховых газов. В зависимости от характера изменения силы Р

ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИЖЕНИЯ ОТКАТНЫХ ЧАСТЕЙ ПРИ ТОРМОЖЕННОМ ОТКАТЕ
Откат оружия при действии на откатные части всех приложенных к ним сил называется тормошенным. Скорость и путь свободного отката считаем известными. Расчет торможенного отката заключается в определ

АНАЛИЗ СУЩЕСТВУЮЩИХ СХЕМ УРАВНОВЕШИВАНИЯ
  Для обеспечения устойчивости станковых пулеметов и зенитных установок стремятся понизить высоту линии огня. При этом для стрельбы с большими углами возвышения цапфы качающе

ПРУЖИННЫЕ УРАВНОВЕШИВАЮЩИЕ МЕХАНИЗМЫ ТЯНУЩЕГО ТИПА
Такие механизмы позволяют добиваться теоретически полного уравновешивания во всем диапазоне углов возвышения. Расчетная схема представлена на рис. 6.2.   При условии полного

ПРУЖИННЫЕ УРАВНОВЕШИВАЮЩИЕ МЕХАНИЗМЫ ТОЛКАЮЩЕГО ТИПА
Расчетная схема пружинного уравновешивающего механизма толкающего типа представлена на рис.6.3. В случае применения этого типа механизма получить полное уравновешивание на всем диапазоне у

УРАВНОВЕШИВАЮЩИЙ МЕХАНИЗМ СО СПИРАЛЬНОЙ ПРУЖИНОЙ
Подобный уравновешивающий механизм имеет две спиральные пружины, симметрично расположенные по обе стороны качающейся

ОБЩИЕ ЗАМЕЧАНИЯ
Перед стрельбой ось канала ствола должна занимать определенное положение относительно цели. Совокупность всех действий по приданию оси канала ствола требуемого направления в пространстве принято на

РЕАКЦИИ, ДЕЙСТВУЮЩИЕ НА ВРАЩАЮЩУЮСЯ ЧАСТЬ СТАНКА
Реакции, действующие на вращающуюся часть станка (рис.7.2), определяются также из уравнений равновесия. Очевидно, при выстреле в сочленениях вертлюга возникают реакций

СЕКТОРНЫЙ ПОДЪЕМНЫЙ МЕХАНИЗМ
Механизм вертикальной наводки, имеющий в числе своих звеньев зубчатую пару, состоящую из шестерни и зубчатого сектора, называется секторным подъемным механизмом. Он состоит из исполнительной зубчат

СЕКТОРНЫЙ ПОВОРОТНЫЙ МЕХАНИЗМ
Кинематическая схема механизма представлена на рис. 7.5. Одним ша звеньев коренной пары чаще является цилиндрическая зубчатая шестерня, а другим звеном - зубчатый сектор или зубчатый венец

ВВОДНАЯ ЧАСТЬ
Устойчивыми полевыми станками называются станки, опорные точки которых при стрельбе из пулемета остаются прижатыми к основанию (грунту), на котором расположена система, и не смещаются относительно

Предварительные замечания
Под продольной устойчивостью понимают устойчивость си­стемы при направлениях стрельбы в плоскости симметрии станка. Эти направления для многих полевых станков являются главными, т. е. направлениями

Условие продольной устойчивости
Действие выстрела на систему с откатом пулемета вдоль его оси сводится (рисунок 8.1): 1) к силе ,

ИССЛЕДОВАНИЕ УСЛОВИЯ ПРОДОЛЬНОЙ УСТОЙЧИВОСТИ И МЕРЫ ЕЕ ОБЕСПЕЧЕНИЯ
Остановимся подробнее на условии (8.1). Величины и

УСТОЙЧИВОСТИ И МЕРЫ ЕЕ ОБЕСПЕЧЕНИЯ
После сделанных предварительных пояснений приведем ряд выводов и мер обеспечения устойчивости, непосредственно вытекающих из выражения (8.1):

С СОХРАНЕНИЕМ УСТОЙЧИВОСТИ
Уже известно, что чем больше значение силы торможения , тем короче полная длина отката, на которой поглоща

ОПОРНЫЕ РЕАКЦИИ ПРИ ПРОДОЛЬНЫХ НАПРАВЛЕНИЯХ СТРЕЛЬБЫ
Опорные реакции, как уже отмечалось, непосредственно связаны с вопросами устойчивости. Они же определяют и ту «осадку», о которой шла речь в начале лекции, а также оказывают влияние на размеры и ко

Поперечная устойчивость при откате. Предварительные замечания
Как известно, современные полевые станки имеют тот или иной угол горизонтального обстрела. В зенитных станках он равен 3600, а в станках для стрельбы по наземным целям – достигает 90

Об устойчивости зенитных систем
Симметричные треножные зенитные станки имеют опорную фигуру в виде равностороннего треугольника, через центр ко­торого проходит геометрическая ось вращения вращающейся части. Из рис. 8.9 ясно, что

О ПОПЕРЕЧНОЙ УСТОЙЧИВОСТИ СТАНКОВ ДЛЯ СТРЕЛЬБЫ ПО НАЗЕМНЫМ ЦЕЛЯМ
Как правило, опорная фигура таких станков представляет равнобедренный треугольник с основанием, расположенным спереди или сзади (у современных станков). В ряде случаев станки для стрельбы

Станок с одной опорной точкой сзади
На рис. 8.11 приведена схема сил, действующих на систему при выстреле, применительно к выбранной прямоугольной системе координатных осей OX, OY и OZ. При этом, на основании изложенног

Станок с двумя опорными точками сзади
На рис. 8.12 представлена схема сил, действующих на систему при выстреле, подобная предыдущей схеме (рис. 8.11). И здесь составляющие силы R:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги