Результаты вычислительного эксперимента

 

Рассмотрим задачу оптимального оценивания при наличии сингулярной и флуктуационной помех для следующих исходных данных:

, , , , , и , , , то есть , , , .

Принимая , , , с учетом (1.2) в узлах сетки имеем

, . Поскольку в данном случае рассматривалась задача оценивания сглаженного значения функции и ее первой производной в средней точке отрезка .

При моделировании вектор случайных погрешностей полагался распределенным по нормальному закону с нулевым математическим ожиданием и корреляционной матрицей , где - заданная положительная константа. Кроме того, полагалось, что на отрезке выполнялось тождественное равенство , то есть . Вычисления проводились с точностью .

Раскроем далее основные вектора и матрицы (здесь и далее числа округлены до третьего знака после запятой) с учетом специфики рассматриваемого примера:

, ,

, ,

,

.

Исходя из условий практической реализуемости развитого метода, сформулированных во втором параграфе, в данном примере система базисных функций выбрана линейно независимой. При этом ранг расширенной матрицы равен 6, что обеспечивает совместность условий несмещенности и инвариантности.

Искомая матрица выглядит так

.

Для принятых исходных данных имеем следующие значения дисперсий ошибок оценивания: (для ).

Рассмотрим теперь более общий случай, когда для заданного отрезка число - произвольное число натурального ряда, то есть . Примем также , .

Для моделирования на ЭВМ случайных погрешностей

использовался датчик случайных чисел, генерирующий квазислучайную последовательность с нормальным распределением, характеризующимся нулевым математическим ожиданием и соответствующей дисперсией .

Результаты моделирования отображены в виде таблицы, показывающей зависимость результирующих оптимальных оценок и , а также евклидовой нормы вектора сингулярной ошибки от числа для и соответственно. При этом указанные оценки формировались путем усреднения единичных оценок величин и , полученных на основе пятидесяти реализаций, генерируемых датчиком случайных чисел.

 

Таблица 3.1

15.157 1.226 0.684 0.989 0.208
20.686 1.124 0.314 0.996 0.189
27.717 1.032 0.263 0.998 0.121
33.321 1.021 0.097 0.999 0.016
38.114 1.007 0.028 1.000 0.009
42.371 1.000 0.007 1.000

 

Анализ результатов моделирования показывает инвариантность получаемых оценок к сингулярным погрешностям (в условиях отсутствия случайных погрешностей результаты расчетов совпадают с точными значениями ) и высокую степень устойчивости к случайным возмущениям.

Развитый метод является основой для решения задач оптимального оценивания значений операторов - кратного дифференцирования в классе функций с финитным спектром. Метод позволяет существенно повысить устойчивость вычислительных процедур как к случайным, так и к сингулярным ошибкам заданного класса.

Основное достоинство предложенного подхода состоит в том, что, в отличие от абсолютного большинства известных методов [2, 3, 23-25, 28, 30], в данном случае не требуется увеличения размерности решаемой задачи при построении оптимальных несмещенных оценок, инвариантных к сингулярным погрешностям.

Достоинством метода также является его универсальность, поскольку решение получено в конечно - аналитическом виде, допускающем компактную векторно-матричную форму записи, что весьма удобно при практической реализации на базе цифровых вычислительных машин различных классов.

Поскольку возможность применения полученных в работе результатов тесно связана с понятием «наблюдаемости» (разрешимости) поставленной задачи, то в практических случаях выбор подпространства сингулярных ошибок можно производить, опираясь на результаты работ [2, 3, 16], в которых дано всестороннее теоретическое и прикладное обоснование понятия «наблюдаемости».