рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Динамічному втискуванні

Динамічному втискуванні - раздел Философия, НАФТОГАЗОВА МЕХАНІКА Величина Кінетичної Енергії Удару Для Ударника, Що Вільно Падає, Дорівнює Йог...

Величина кінетичної енергії удару для ударника, що вільно падає, дорівнює його потенціальній енергії в крайньому верхньому положенні

, (11.10)

де U – потенціальна енергія ударника;

m – маса ударника;

h – відстань від верхнього крайнього положення робочої поверхні штампа до поверхні зразка гірської породи.

Прирівнявши значення Uк і U і підставивши його у вираз (11.1), можна визначити початкову швидкість удару v0 штампа об гірську породу

. (11.11)

Вивченням процесів деформування гірських порід при ударі займалися в лабораторії Уфимському нафтовому інституті під керівництвом Мавлютова М.Р.

На основі проведених експериментів встановлено, що із збільшенням енергії удару (а відповідно, і початкової швидкості v0) змінюється характер залежності сили від переміщення. В загальному випадку графік навантаження – переміщення при динамічному втискуванні є складною кривою, що має максимуми і мінімуми, причому кожен наступний максимум вищий за попередній. Встановлено, що при збільшенні маси ударника збільшується опір проникненню ударника, тому при однаковій енергії удару глибина проникнення важкого ударника менша.

Ці результати наштовхують на висновок, що в процесі буріння доцільно забезпечувати великі швидкості взаємодії елементів озброєння долота з гірською породою. Швидкість удару елементів озброєння прямо пропорційна швидкості обертання долота. Енергія взаємодії елемента озброєння навпаки від швидкості обертання залежить мало, а, основним чином, залежить від осьового навантаження на долото.

Як показали результати експериментальних досліджень відмінність механізму руйнування породи при динамічному втискуванні від механізму статичного втискування є непринциповою. Тому розглянемо лише кінематику розвитку руйнування породи із збільшенням енергії удару.

При малих значеннях енергії удару на поверхні гірської породи утворюється зона тріщин, що оточують контур штампа (рис. 11.2, а).

 

Якщо енергію удару збільшувати, за контуром породи з’являється зона кругового сколювання. Цю форму руйнування Мавлютов назвав першою формою крихкого руйнування. При подальшому збільшенні енергії удару лише збільшується об’єм сколотої породи ( рис. 11.2, б). Основне збільшення об’єму руйнування відбувається в результаті поступового заглибленні штампа. При цьому величина навантаження зростає несуттєво.

Коли енергія удару досягає певної величини, спостерігається крихке руйнування породи під штампом ( рис. 11.2, в), аналогічне тому руйнуванню, що має місце при статичному втискуванні.

Цю форму руйнування прийнято називати другою формою руйнування. Уламки породи, що при цьому утворюються, за результатами раніше названих дослідників мають сліди першої форми, тобто перша і друга форми руйнування процесі деформування утворюються послідовно.

При подальшому збільшенні енергії удару до деякої критичної величини форма руйнування суттєво не змінюється. Спочатку зростає глибина проникнення індентора в породу, а при більших значеннях енергії удару можуть з’явитися нові нестійкі форми руйнування.

Якщо енергія удару досягне критичного значення, з’явиться нова, стійка третя форма руйнування (рис. 11.2, г). Уламки породи, що при цьому утворюються також несуть на собі сліди попередньої форми руйнування. Це свідчить про послідовне утворення форм руйнування. Наявність максимумів і мінімумів на кривих залежності навантаження від глибини проникнення штампа свідчать, що процес руйнування гірських порід відбувається скачкоподібно.

Збільшуючи енергію удару далі, можна отримати четверту і, можливо, наступні форми руйнування. Кількість отриманих форм руйнування обмежується міцністю інденторів. З рис. 11.2 видно, при переході від першої форми руйнування до другої (U1–U2) спостерігається суттєве зростання зони руйнування.

Те, що форми руйнування породи розвиваються скачками, а об’єм зони руйнування та енергоємності руйнування породи із збільшенням сили удару зростають немонотонно, пояснюється так.

Як тільки наступає чергова форма руйнування, спостерігається стабілізація об’єму руйнування і мінімум на кривих залежності енергоємності руйнування від енергії удару. Після досягнення чергової форми руйнування на цих кривих спостерігається максимум енергоємності. При чому, кожен наступний мінімум і максимум менші за попередні.

З рис. 11.3 видно, при переході від першої форми руйнування до другої (U1–U2) спостерігається суттєве зростання зони руйнування. Подальше збільшення енергії від U2 до U2 не дає відчутної зміни об’єму лунки, і лише при U1 > U2 знову спостерігається зростання об’єму руйнування, пов’язане із появою проміжних форм руйнування в області U2–U3 . Формування третьої форми руйнування зумовлює стабілізацію об’єму руйнування (область U3–U4 ) і т.д.

Енергоємність руйнування породи прямо пропорційна енергії удару і обернено пропорційна об’єму руйнування:

. (11.12)

Залежність AV від Uк також показана на рис. 11.3, з якого видно, немонотонна зміна об’єму лунки зумовлює наявність мінімумів і максимумів на кривій енергоємності.

Із зростанням енергії удару кожен наступний мінімум максимум нижчий за попередні, тобто в цілому із збільшенням енергії удару спостерігається тенденція до зменшення енергоємності динамічного руйнування гірських порід.

Перший мінімум на кривій енергоємності відповідає утворенню другої форми руйнування. Другий мінімум відповідає утворенню третьої форми руйнування. Стабілізація об’єму руйнування після утворення другої і третьої форм руйнування спричинює появу максимумів на кривій енергоємності руйнування порід.

Характерну зміну енергоємності руйнування порід можна пояснити з точки зору енергетичних законів Ріттінгера і Кірпічова. Спостереження показали, що по мірі розвитку тієї чи іншої форми руйнування (області U1–U2 , U2–U3 , U3–U4 ) збільшується розмір уламків і зменшується відношення об’ємів дрібно роздробленої породи і великих уламків, тобто спостерігається зменшення дисперсності зруйнованої породи, що і є причиною зменшення енергоємності її руйнування. В областях стабілізації об’єму руйнування ( області U2 –U2 , U3–U3 ) із збільшенням енергії удару додаткова енергія витрачається на підвищення дисперсності зруйнованої породи без суттєвого збільшення загального об’єму руйнування. В цих областях енергоємність руйнування породи зростає. В цілому ж по мірі збільшення енергії удару має місце тенденція до зменшення дисперсності зруйнованої породи, що і є причиною загального зменшення енергоємності.

Вивчення енергоємності руйнування гірських порід показує, що при бурінні слід намагатися збільшити енергію кожного одиничного контакту елементів озброєння долота з породою. Цей напрям оптимізації процесу руйнування порід реалізується шляхом збільшенням підведеної до долота енергії і удосконаленням породоруйнуючих інструментів.

 


– Конец работы –

Эта тема принадлежит разделу:

НАФТОГАЗОВА МЕХАНІКА

Університет нафти і газу... І С Васько... НАФТОГАЗОВА МЕХАНІКА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Динамічному втискуванні

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Загальна систематика гірських порід
Гірські породи в залежності від геологічних процесів, в результаті яких вони утворилися, розділяють на три генетичні групи: - магматичні або вивержені; - осадові;

Петрографічні особливості будови гірських порід
Властивості порід залежать в першу чергу від їх складу. Раніше відзначалося, що гірські породи складаються з мінералів. Відомо близько 3000 різних мінералів. Однак до складу гірських порід входить

Неоднорідність гірських порід
Анізотропними називають тіла, в яких показники властивостей однакові в паралельних і неоднакові в непаралельних напрямах. Тіла, що мають однакові показники в

Загальна характеристика пластових флюїдів
До пластових флюїдів відносяться нафта, природний газ та пластова вода. Нафта − це суміш різних вуглеводневих та не вуглеводневих (гетероатомних) сполук.

Коефіцієнт об’ємного стиснення нафти
. (4.1) b змінюється в межах (4¸70)×10-10 Па-1. Сти

Середовищі
Нафта і газ, а також пластові води вміщуються в пустотах і порах так званих порід-колекторів. Приблизно 60% світових запасів вуглеводнів вміщуються у відкладах піщано-алевролітових порід, які назив

Напруження і деформації суцільних середовищ
  Суцільне середовище – це гіпотетичне середовище, яке може під дією навантажень як завгодно змінювати свою форму (деформуватись), не втрачаючи при цьому суцільно

Деформації суцільного середовища
Нехай в процесі деформації середовища його точки одержали переміщення u з компонентами ux, uy, uz

Рівняння руху
    Ці рівняння для до

Рівняння неперервності
Це рівняння зв’язує густину з характеристиками руху суцільного середовища, що встановлюється на основі закону збереження маси (повна зміна маси у замкненому об’ємі дорівнює нулю)

Рівняння реології
Рівняння реології визначають зв’язок між компонентами тензора напружень та тензорів деформацій і швидкостей деформацій. Рівняння реології отримують, як правило, на основі дослідних даних. Параметри

Рівняння стану
Рух суцільного середовища призводить до зміни параметрів стану ( тиску р і температури Т), що впливає на його фізичні властивості (густину, реологічн

Суцільних середовищ
  Включає вибір системи рівнянь та підготовку додаткових умов, яким має задовольняти розв’язок задачі на границях області її визначення. Додаткові умови, які поділяють на початкові

Рівняння теорії пружності
Для незмінних властивостей тіла рівняння теорії пружності включають рівняння руху (5.16), Коші (5.6) та узагальнений закон Гука (5.21). Для квазіпластичних процесів (

Рівняння теорії пластичності
Для незмінних властивостей тіла рівняння теорії пластичності базуються на рівняннях рівноваги (5.33), Коші (5.6) і умови пластичності (рівняння реології). Для загального випадку навантажен

Рівняння напружено-деформованого стану пористих гірських порід
Ці рівняння у випадку насичення порід пластовими флюїдами під тиском р потребують конкретизації понять про напруження. Якщо приділяти увагу деформації матеріалу пор

Теорії міцності
  Теорії міцності обґрунтовують можливість використання результатів модельних випробувань матеріалів на міцність при простих видах навантажень у розрахунках на міцність при складному

Основні поняття теорії фільтрації
При бурінні відбувається масообмін між свердловиною і розкритими пластами, кий визначається фільтраційними, дифузійними, осмотичними та іншими процесами. Фільтрація належить до найбільш вагомих про

A – емпіричний коефіцієнт (для пісківa=0,015 –0,018 ).
Закон Дарсі узагальнюють також на випадок багатофазової течії у пористому середовищі. Для цього розповсюджують поняття швидкості фільтрації на окрему фазу vi , як

Гірських порід
Кількість фізичних властивостей гірських порід, що проявляються у взаємодії з іншими об’єктами і явищами матеріального світу, може бути як завгодно великою. Однак, для практики гірничої справи важл

Таблиця 6.1 – Класифікація фізичних властивостей гірських порід
Клас Група Назва Гравітаційні Гравітаційні Питома вага Об’ємна вага

Міцнісні властивості
Міцність – це здатність порід чинити опір руйнуванню під дією прикладених механічних напружень. Вона характеризується межею міцності при стиску і розтягу, зчепл

В УМОВАХ ПРИРОДНОГО ЗАЛЯГАННЯ
Напружений стан гірських порід в земній корі зумовлений тиском розташованих вище порід і тектонічними процесами. Розглянемо випадок, коли напружений стан масиву порід зумовлений лише граві

Механізм проявлення гірського тиску
Розкриття масиву гірських порід свердловиною суттєво змінює їх напружений стан, оскільки тиск у свердловині, як правило, менший за боковий тиск порід. Стінки свердловини тривал

Термічні напруження в гірських породах
В загальному випадку температура промивальної рідини, що заповнює свердловину, відрізняється від температури гірських порід, розкритих нею. Охолодження чи нагрівання стінок свердловини спричиняють

Гідродинамічні коливання тиску
Гідродинамічні коливання тиску у свердловині також є причиною зміни напруженого стану гірських порід в приствольній зоні. Тиск у свердловині стає більшим за гідростатичний при роботі бурових насосі

Умови стійкості стінок свердловини
Втрата стійкості і руйнування гірських порід, з яких складені стінки свердловини, є небажаним ускладненням при бурінні. Це може статися у випадку, коли напруження в породі досягнуть граничного стан

Гідророзрив пласта
    При суттєвому збіл

Порід на стінках свердловини
Гірські породи в умовах природного залягання, а також при розкритті їх свердловиною взаємодіють головним чином з рідким середовищем. Механізм дії рідкого середовища на тверді тіла вивчався

Прояв в’язкісних властивостей гірських порід
В’язкісні (реологічні) властивості гірських порід проявляються на великих глибинах. Особливо відчутно їх прояв у глинистих, галоїдних і сірчанокислих породах. В загальному випадку деформац

Енергетичні закони руйнування (диспергування) крихких тіл
В основу визначення витрат енергії на подрібнення (диспергування) твердих тіл покладено енергетичні закони руйнування Ріттінгера і Кірпічова. За законом Ріттінгера

Продуктів руйнування
Точка А пе­ре­ти­­­ну кривих на рис. 9.1 відповідає розміру час­тин 0,5 ÷1,0 мм. В зв’язку з цим Шрейнер Л.А. показав, що у випадку використання закону подіб

Долота з породою
  За принципом взаємодії з гірською породою усі механічні породоруйнуючі інструменти для буріння свердловин можна розділити на три класи: ріжуче-сколююючі, дроблячі і дробляче-сколююч

Фізичні явища при руйнуванні гірських порід
Руйнування твердих тіл, в тому числі і гірських порід, відбувається або в результаті відриву (від нормальних розтягуючи напружень), або сколювання, зсуву, зрізу (від дотичних напружень). При розтяг

Напружений стани гірських порід при втискуванні
Розглянуті вище схеми взаємодії елементів озброєння доліт з породою показали, що руйнування породи відбувається послідовним деформуванням окремих ділянок поверхні вибою при одночасній дії нормальни

Втискування плоского циліндричного індентора
    Плоский циліндричн

Втискування сферичного індентора
Деформування порід при втискуванні жорсткого сферичного індентора і плоского циліндричного штампа багато в чому схожі, хоча є і суттєві відмінності.

Втискування інденторів різної форми
Фрезовані зубці шарошкових доліт мають практично плоску прямокутну поверхню контакту. Через складність розв’язку задачі про розподіл тиску під прямокутним штампом, отримано розв’язок для нескінчено

Втискуванні інденторів
Розгляньмо, як руйнується гірська порода при втискуванні різних інденторів. Як встановлено у 10.4, в процесі втискування плоского індентора в породу граничний стан може бути досягну

Напружень в гірських породах
Із схем взаємодії елементів озброєння з гірською породою (див. розділ 8.1) видно, одночасно з нормальним навантаженням діє і значне дотичне навантаження. Розглянемо, як впливає дотичне навантаження

Визначення показників механічних властивостей гірських порід методом статичного втискування штампа
Вперше метод втискування для оцінки опору гірських порід руйнуванню при бурінні запропонував Є.Ф. Епштейн. За цією методикою в зразок породи втискувався різець формою двостороннього клина з кутом п

Класифікація гірських порід
  За результатами експериментального дослідження властивостей гірських порід при втискуванні штампа у значну кількість зразків гірських порід було створено кілька класифікаційних шкал

Таблиця 10.1 – Класифікація гірських порід за твердістю
  Група І (м’які) ІІ (середні)   ІІІ (тверді) Категорія

Деформування і руйнування гірських порід
  При бурінні свердловин мають місце виключно динамічні процеси. Якщо для опису статичних процесів достатня система рівнянь рівноваги сил і моментів, то для динамічних процесів додатк

Взаємозв’язок характеристик порід, визначених при статичному і динамічному втискуванні
Встановлення взаємозв’язку між характеристиками динамічного руйнування порід з показниками статичного втискування має велике практичне значення. Однак специфіка динамічних випробувань порід не дозв

Та абразивність гірських порід
Деталі бурових машин і механізмів, буровий і породоруйнівний інструмент в процесі роботи зношується, через що змінюються їх розміри і форма. По досягненню граничної величини зношування ці деталі та

Гірських порід
Абразивність гірської породи, як і будь-який інший показник механічних властивостей, відображає її прояв у конкретних умовах роботи. Зміна цих умов може стати причиною такої суттєвої зміни процесу

При взаємодії з гірською породою
При вивченні абразивного зношування потрібно використовувати моделі процесів і визначати показники абразивності як характеристики цих моделей. Однак, сучасний стан вивченості цього питання не дозво

БУРИМІСТЬ ГІРСЬКИХ ПОРІД
  Буримість гірських порід – це їх здатність руйнуватися у вибійних умовах. Буримість визначається сукупністю геологічних і техніко-технологічних факт

ПЕРЕЛІК РЕКОМЕНДОВАНИХ ДЖЕРЕЛ
1 Спивак А. И. Разрушение горных пород при бурении скважин / А. И. Спивак, А. Н. Попов. - М.: Недра, 1979. − 238 с. 2 Спивак А.И. Механика горных пород / А. И. Спивак. - М.: Недра, 1

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги