рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Коефіцієнт об’ємного стиснення нафти

Коефіцієнт об’ємного стиснення нафти - раздел Философия, НАФТОГАЗОВА МЕХАНІКА ...

. (4.1)

b змінюється в межах (4¸70)×10-10 Па-1. Стисливість нафти в значній мірі залежить від температури, тиску і кількості розчиненого газу.

Реологічні властивості нафти характеризують залежність між деформаціями і напруженнями зсуву при її течії. Найуживанішими реологічними моделями, що описують течію нафт, є моделі

Ньютона ; (4.2)

Освальда ; (4.3)

Шведова − Бінгама , (4.4)

де t − напруження зсуву;

− градієнт швидкості зсуву;

t0, h − динамічне напруження зсуву і в’язкість рідини;

k, n − міра консистенції і показник нелінійності рідини.

Рідина Освальда з показником нелінійності n <1 називається псевдопластичною, а із n>1дилатантною.

Механічні моделі та графіки реологічних моделей Ньютона і Шведова- Бінгама показані на рис. 4.1, а графік реологічної моделі Оствальда − на рис. 4.2.

Нафти у реологічному відношенні в більшості випадків описуються рівнянням Ньютона. Наявність у складі нафти твердих парафінів, асфальти стих та інших речовин надає їм в’язкопластичних і в’яхзкопружних властивостей.

Залежно від складу реологічні властивості нафти змінюються в широких межах (наприклад, в’язкість від 0,001 Па·с до 0,15 Па·с і більше). На реологічні властивості нафти суттєво впливають тиск і особливо температура. З підвищенням температури реологічні властивості нафти зменшуються.

 
 

Реологічні властивості нафти вимірюють віскозиметрами ротаційного або капілярного типів. Реологічні властивості нафт у пластових умовах визначають на спеціальних віскозиметрах або установках, які моделюють пластові температури і тиски.

Теплофізичні властивості нафти: питома теплоємність с=1884¸2763 Дж/(кг·К); Коефіцієнт теплопровідності l=0,01¸1,16 Вт/(м·К); коефіцієнт температуропровідності а=(0,12¸0,55)×10-4 м2/с; коефіцієнт теплового температурного розширення bт=(0,58¸1,27)×10-3 1/К. Із підвищенням температури коефіцієнт температурного розширення зростає. Для нафти з більшою густиною коефіцієнт bт менший.

Нафта є діелектриком, тобто не проводить електричний струм.

Фізичні властивості нафти можуть змінюватися як з глибиною покладу, так і по його площі.

Фізичні властивості природного газу залежать від його хімічного складу і умов залягання (температура, тиск).

Зв’язок між густиною газу і його молярною масою m, тиском р та температурою Т визначається рівнянням стану реального газу

, (4.5)

де R − універсальна газова стала (R= 8,3144 Дж/(моль·К);

− коефіцієнт надстисливості газу.

Молярна маса природного газу знаходиться як для суміші газів:

, (4.6)

де m молярна маса і-го компонента газу;

уі=n/Snі − молярна частка і-го компонента газу;

nі − кількість молів і-го компонента газу в суміші.

Коефіцієнт надстисливості газу визначається за допомогою емпіричних графіків Брауна - Катца в залежності від приведених тиску і температури.

Розчинність газів сг у рідині, яка визначається відношенням об’єму газу Vго при нормальних умовах до об’єму рідини Vр при постійній температурі і незначних змінах тиску прямо пропорційна абсолютному тиску р газу над поверхнею (закон Генрі)

, (4.7)

де a − коефіцієнт розчинності.

У загальному випадку коефіцієнт розчинності газу може суттєво змінюватися при збільшенні тиску, підвищенні температури та інших факторах, що сприяють процесу розчинення. За таких умов закон Генрі порушується.

Розчинність газів у суспензіях, як правило, зменшується із підвищенням концентрації інших розчинених речовин. За даними Р.Г. Ахмадаєвої розчинність метану у воді при наявності NaCl зменшується в 2−3 рази. Досліди А.М. Левіна показали, що коефіцієнт розчинності вуглеводневих газів у глинистій суспензії дещо менший, ніж у воді. Це зумовлено меншою кількістю води в суспензії та її адсорбцією глинистими частинками.

За даними Т.П. Софронової і Т.П. Жуче, коефіцієнт розчинності компонентів природних газів у нафті в залежності від тиску може збільшуватися і зменшуватися. Встановлено, що розчинність газів збільшується із підвищенням вмісту в нафті парафінових вуглеводнів і зменшується при високому вмісті вуглеводнів. Відзначається також, що на розчинність газів у нафті природа газів впливає в більшій мірі, ніж склад нафти. З підвищенням температури розчинність вуглеводневих газів у нафті зменшується. Коефіцієнт розчинності природних газів у нафті змінюється в широких межах і досягає (4¸5)×10-5 Па-1.

Кількість розчиненого у нафті газу характеризують газовмістом нафти G, під яким розуміють виділений із одиниці об’єму пластової нафти об’єм газу при зниженні тиску і температури до стандартних умов (атмосферний тиск і температура 20°С), тобто

, (4.8)

де Vг − об’єм виділеного газу в стандартних умовах із об’єму нафти Vн у пластових умовах.

Ступінь насиченості нафти газом характеризують тиском насичення, під яким розуміють максимальний тиск, при якому газ починає виділятись із нафти при її ізотермічному розширенні.

В’язкість природних газів у значній мірі залежить від їх тиску і температури . В інженерних розрахунках в’язкість природного газу може бути прийнята рівною в’язкості метану за умови, що вміст важких вуглеводнів не перевищує 10 %.

Фізичні властивості пластових вод суттєво залежать від виду води (вільна чи зв’язана), ступеня мінералізації, розчинності газу, умов залягання (тиск і температура) та інших факторів.

Густина пластових вод залежить від ступеня мінералізації і може змінюватися від 1000 кг/м3 (прісна вода) до 1450 кг/м3 (при концентрації солей 643 кг/м3). У технічних розрахунках, якщо нема даних про мінералізацію, приймають густину води рівною 1100 кг/м3.

В’язкість пластових вод із підвищенням концентрації розчинених солей збільшується.

Зростання температури зменшує в’язкість пластових вод (наприклад, із зростанням температури від 5 °С до 80 °С в’язкість води зменшується більш ніж вчетверо).

Збільшення тиску призводить до незначного підвищення в’язкості.

Коефіцієнт об’ємного стиснення з підвищенням тиску зменшується, а температури − збільшується. Характер впливу тиску і температури на коефіцієнт теплового розширення аналогічний.

Нижче подамо фізичні властивості чистої води при атмосферному тиску (0,102 МПа) і температурі +5 °С:

− в’язкість h =0,0015 Па·с;

− коефіцієнт об’ємного стиснення b =4,9·10-10 Па-1;

− коефіцієнт теплового розширення bт =1,0·10-5 К-1;

− поверхневий натяг s =7,84·10-2 Дж/м2;

− швидкість поширення звуку а0 = 1425 м/с;

− питома теплоємність с =4,2·103Дж/(кг·К);

− коефіцієнт теплопровідності l =0,564 Дж/ (м·с·К);

− коефіцієнт температуропровідності а =1,34·10-7 м2/с.

 

– Конец работы –

Эта тема принадлежит разделу:

НАФТОГАЗОВА МЕХАНІКА

Університет нафти і газу... І С Васько... НАФТОГАЗОВА МЕХАНІКА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Коефіцієнт об’ємного стиснення нафти

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Загальна систематика гірських порід
Гірські породи в залежності від геологічних процесів, в результаті яких вони утворилися, розділяють на три генетичні групи: - магматичні або вивержені; - осадові;

Петрографічні особливості будови гірських порід
Властивості порід залежать в першу чергу від їх складу. Раніше відзначалося, що гірські породи складаються з мінералів. Відомо близько 3000 різних мінералів. Однак до складу гірських порід входить

Неоднорідність гірських порід
Анізотропними називають тіла, в яких показники властивостей однакові в паралельних і неоднакові в непаралельних напрямах. Тіла, що мають однакові показники в

Загальна характеристика пластових флюїдів
До пластових флюїдів відносяться нафта, природний газ та пластова вода. Нафта − це суміш різних вуглеводневих та не вуглеводневих (гетероатомних) сполук.

Середовищі
Нафта і газ, а також пластові води вміщуються в пустотах і порах так званих порід-колекторів. Приблизно 60% світових запасів вуглеводнів вміщуються у відкладах піщано-алевролітових порід, які назив

Напруження і деформації суцільних середовищ
  Суцільне середовище – це гіпотетичне середовище, яке може під дією навантажень як завгодно змінювати свою форму (деформуватись), не втрачаючи при цьому суцільно

Деформації суцільного середовища
Нехай в процесі деформації середовища його точки одержали переміщення u з компонентами ux, uy, uz

Рівняння руху
    Ці рівняння для до

Рівняння неперервності
Це рівняння зв’язує густину з характеристиками руху суцільного середовища, що встановлюється на основі закону збереження маси (повна зміна маси у замкненому об’ємі дорівнює нулю)

Рівняння реології
Рівняння реології визначають зв’язок між компонентами тензора напружень та тензорів деформацій і швидкостей деформацій. Рівняння реології отримують, як правило, на основі дослідних даних. Параметри

Рівняння стану
Рух суцільного середовища призводить до зміни параметрів стану ( тиску р і температури Т), що впливає на його фізичні властивості (густину, реологічн

Суцільних середовищ
  Включає вибір системи рівнянь та підготовку додаткових умов, яким має задовольняти розв’язок задачі на границях області її визначення. Додаткові умови, які поділяють на початкові

Рівняння теорії пружності
Для незмінних властивостей тіла рівняння теорії пружності включають рівняння руху (5.16), Коші (5.6) та узагальнений закон Гука (5.21). Для квазіпластичних процесів (

Рівняння теорії пластичності
Для незмінних властивостей тіла рівняння теорії пластичності базуються на рівняннях рівноваги (5.33), Коші (5.6) і умови пластичності (рівняння реології). Для загального випадку навантажен

Рівняння напружено-деформованого стану пористих гірських порід
Ці рівняння у випадку насичення порід пластовими флюїдами під тиском р потребують конкретизації понять про напруження. Якщо приділяти увагу деформації матеріалу пор

Теорії міцності
  Теорії міцності обґрунтовують можливість використання результатів модельних випробувань матеріалів на міцність при простих видах навантажень у розрахунках на міцність при складному

Основні поняття теорії фільтрації
При бурінні відбувається масообмін між свердловиною і розкритими пластами, кий визначається фільтраційними, дифузійними, осмотичними та іншими процесами. Фільтрація належить до найбільш вагомих про

A – емпіричний коефіцієнт (для пісківa=0,015 –0,018 ).
Закон Дарсі узагальнюють також на випадок багатофазової течії у пористому середовищі. Для цього розповсюджують поняття швидкості фільтрації на окрему фазу vi , як

Гірських порід
Кількість фізичних властивостей гірських порід, що проявляються у взаємодії з іншими об’єктами і явищами матеріального світу, може бути як завгодно великою. Однак, для практики гірничої справи важл

Таблиця 6.1 – Класифікація фізичних властивостей гірських порід
Клас Група Назва Гравітаційні Гравітаційні Питома вага Об’ємна вага

Міцнісні властивості
Міцність – це здатність порід чинити опір руйнуванню під дією прикладених механічних напружень. Вона характеризується межею міцності при стиску і розтягу, зчепл

В УМОВАХ ПРИРОДНОГО ЗАЛЯГАННЯ
Напружений стан гірських порід в земній корі зумовлений тиском розташованих вище порід і тектонічними процесами. Розглянемо випадок, коли напружений стан масиву порід зумовлений лише граві

Механізм проявлення гірського тиску
Розкриття масиву гірських порід свердловиною суттєво змінює їх напружений стан, оскільки тиск у свердловині, як правило, менший за боковий тиск порід. Стінки свердловини тривал

Термічні напруження в гірських породах
В загальному випадку температура промивальної рідини, що заповнює свердловину, відрізняється від температури гірських порід, розкритих нею. Охолодження чи нагрівання стінок свердловини спричиняють

Гідродинамічні коливання тиску
Гідродинамічні коливання тиску у свердловині також є причиною зміни напруженого стану гірських порід в приствольній зоні. Тиск у свердловині стає більшим за гідростатичний при роботі бурових насосі

Умови стійкості стінок свердловини
Втрата стійкості і руйнування гірських порід, з яких складені стінки свердловини, є небажаним ускладненням при бурінні. Це може статися у випадку, коли напруження в породі досягнуть граничного стан

Гідророзрив пласта
    При суттєвому збіл

Порід на стінках свердловини
Гірські породи в умовах природного залягання, а також при розкритті їх свердловиною взаємодіють головним чином з рідким середовищем. Механізм дії рідкого середовища на тверді тіла вивчався

Прояв в’язкісних властивостей гірських порід
В’язкісні (реологічні) властивості гірських порід проявляються на великих глибинах. Особливо відчутно їх прояв у глинистих, галоїдних і сірчанокислих породах. В загальному випадку деформац

Енергетичні закони руйнування (диспергування) крихких тіл
В основу визначення витрат енергії на подрібнення (диспергування) твердих тіл покладено енергетичні закони руйнування Ріттінгера і Кірпічова. За законом Ріттінгера

Продуктів руйнування
Точка А пе­ре­ти­­­ну кривих на рис. 9.1 відповідає розміру час­тин 0,5 ÷1,0 мм. В зв’язку з цим Шрейнер Л.А. показав, що у випадку використання закону подіб

Долота з породою
  За принципом взаємодії з гірською породою усі механічні породоруйнуючі інструменти для буріння свердловин можна розділити на три класи: ріжуче-сколююючі, дроблячі і дробляче-сколююч

Фізичні явища при руйнуванні гірських порід
Руйнування твердих тіл, в тому числі і гірських порід, відбувається або в результаті відриву (від нормальних розтягуючи напружень), або сколювання, зсуву, зрізу (від дотичних напружень). При розтяг

Напружений стани гірських порід при втискуванні
Розглянуті вище схеми взаємодії елементів озброєння доліт з породою показали, що руйнування породи відбувається послідовним деформуванням окремих ділянок поверхні вибою при одночасній дії нормальни

Втискування плоского циліндричного індентора
    Плоский циліндричн

Втискування сферичного індентора
Деформування порід при втискуванні жорсткого сферичного індентора і плоского циліндричного штампа багато в чому схожі, хоча є і суттєві відмінності.

Втискування інденторів різної форми
Фрезовані зубці шарошкових доліт мають практично плоску прямокутну поверхню контакту. Через складність розв’язку задачі про розподіл тиску під прямокутним штампом, отримано розв’язок для нескінчено

Втискуванні інденторів
Розгляньмо, як руйнується гірська порода при втискуванні різних інденторів. Як встановлено у 10.4, в процесі втискування плоского індентора в породу граничний стан може бути досягну

Напружень в гірських породах
Із схем взаємодії елементів озброєння з гірською породою (див. розділ 8.1) видно, одночасно з нормальним навантаженням діє і значне дотичне навантаження. Розглянемо, як впливає дотичне навантаження

Визначення показників механічних властивостей гірських порід методом статичного втискування штампа
Вперше метод втискування для оцінки опору гірських порід руйнуванню при бурінні запропонував Є.Ф. Епштейн. За цією методикою в зразок породи втискувався різець формою двостороннього клина з кутом п

Класифікація гірських порід
  За результатами експериментального дослідження властивостей гірських порід при втискуванні штампа у значну кількість зразків гірських порід було створено кілька класифікаційних шкал

Таблиця 10.1 – Класифікація гірських порід за твердістю
  Група І (м’які) ІІ (середні)   ІІІ (тверді) Категорія

Деформування і руйнування гірських порід
  При бурінні свердловин мають місце виключно динамічні процеси. Якщо для опису статичних процесів достатня система рівнянь рівноваги сил і моментів, то для динамічних процесів додатк

Динамічному втискуванні
Величина кінетичної енергії удару для ударника, що вільно падає, дорівнює його потенціальній енергії в крайньому верхньому положенні

Взаємозв’язок характеристик порід, визначених при статичному і динамічному втискуванні
Встановлення взаємозв’язку між характеристиками динамічного руйнування порід з показниками статичного втискування має велике практичне значення. Однак специфіка динамічних випробувань порід не дозв

Та абразивність гірських порід
Деталі бурових машин і механізмів, буровий і породоруйнівний інструмент в процесі роботи зношується, через що змінюються їх розміри і форма. По досягненню граничної величини зношування ці деталі та

Гірських порід
Абразивність гірської породи, як і будь-який інший показник механічних властивостей, відображає її прояв у конкретних умовах роботи. Зміна цих умов може стати причиною такої суттєвої зміни процесу

При взаємодії з гірською породою
При вивченні абразивного зношування потрібно використовувати моделі процесів і визначати показники абразивності як характеристики цих моделей. Однак, сучасний стан вивченості цього питання не дозво

БУРИМІСТЬ ГІРСЬКИХ ПОРІД
  Буримість гірських порід – це їх здатність руйнуватися у вибійних умовах. Буримість визначається сукупністю геологічних і техніко-технологічних факт

ПЕРЕЛІК РЕКОМЕНДОВАНИХ ДЖЕРЕЛ
1 Спивак А. И. Разрушение горных пород при бурении скважин / А. И. Спивак, А. Н. Попов. - М.: Недра, 1979. − 238 с. 2 Спивак А.И. Механика горных пород / А. И. Спивак. - М.: Недра, 1

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги