рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция №7

Лекция №7 - Лабораторная Работа, раздел Философия, Ремизов А.Н. Медицинская и биологическая физика 1. Электромагнитная Индукция. Закон Фарадея. Правило Ленца. 2. Взаим...

1. Электромагнитная индукция. Закон Фарадея. Правило Ленца.

2. Взаимная индукция и самоиндукция. Энергия магнитного поля.

3. Переменный ток. Работа и мощность переменного тока.

4. Емкостное и индуктивное сопротивление.

5. Использование переменного тока в медицинской практике, его воздействие на организм.

 

1.Ток, возбуждаемый магнитным полем в замкнутом контуре, называется индукционным током, а само явление возбуждения тока посредством магнитного поля – электромагнитной индукцией.

Электродвижущая сила, обуславливающая индукционный ток, называется электродвижущей силой индукции.

В замкнутом контуре индуцируется ток во всех случаях, когда происходит изменение потока магнитной индукции через площадь, ограниченную контуром- закон Фарадея.

Величина ЭДС индукции пропорциональна скорости изменения потока магнитной индукции:

~ (1)

Направление индукционного тока определяется правилом Ленца:

Индукционный ток имеет такое направление, что его собственное магнитное поле компенсирует изменение потока магнитной индукции, вызывающей этот ток.

=- (2)

[]

2.Взаимная индукция и самоиндукция являются частным случаем электромагнитной индукции.

Взаимной индукцией называется возбуждение тока в контуре при изменении тока в другом контуре.

Предположим, что в контуре 1 идет ток I1. Магнитный поток Ф2, связанный с контуром 2, пропорционален магнитному потоку, связанному с контуром 1.

В свою очередь магнитный поток, связанный с контуром 1, ~ I1, поэтому

(3)

Где M-коэффициент взаимной индукции. Предположим, что за время dt ток в контуре 1 изменяется на величину d I1. Тогда, согласно формуле (3), магнитный поток, связанный с контуром (2), изменится на величину , в результате чего в этом контуре появится ЭДС взаимной индукции (по закону Фарадея)

=- (4)

Формула (4) показывает, что электродвижущая сила взаимной индукции, возникающая в контуре, пропорциональна скорости изменения тока в соседнем контуре и зависит от взаимной индуктивности этих контуров.

Из формулы (3) следует, что

(5)

Т.е. взаимная индуктивность двух контуров равна магнитному потоку, связанному с одним из контуров, когда в другом контуре идет ток, равный единице. M измеряется в Генри[Г=Вб/А]

Взаимная индуктивность зависит от формы размеров и взаимного расположения контуров и от магнитной проницаемости среды, но не зависит от силы тока в контуре.

Конур, в котором изменяется ток, индуцирует ток не только в других, соседних, контурах, но и в себе самом: это явление называется самоиндукцией.

Магнитный поток Ф, связанный с контуром пропорционален току I в контуре, поэтому

(6)

Где L- коэффициент самоиндукции, или индуктивность контура

Предположим, что за время dt ток в контуре изменяется на величину dI. Тогда из (6)

,

В результате чего в этом контуре появится ЭДС самоиндукции

=- (7)

Из (6) следует, что . Т.е. индуктивность контура равна связанному с ним магнитному потоку, если в контуре идет ток, равный единице.

Явление электромагнитной индукции основано на взаимных превращениях энергий электрического тока и магнитного поля

Пусть в некотором контуре с индуктивностью L включается ток. Возрастая от 0 до I, он создает магнитный поток .

Изменение на малую величину dI сопровождается изменением магнитного потока на малую величину

(8)

При этом ток совершает работу dA=IdФ, т.е. . Тогда

(9)

3.Синусоидальная ЭДС возникает в рамке, которая вращается с угловой скоростью в однородном магнитном поле индукцией В

Поскольку магнитный поток

(10)

где-угол между нормалью к рамке n и вектором магнитной индукции В, прямо пропорционален времени t.

По закону электромагнитной индукции Фарадея

=- (11)

Где - скорость изменения потока электромагнитной индукции. Тогда (12)

Где амплитудное значение ЭДС индукции.

Эта ЭДС создает в контуре синусоидальный переменный ток силой

 

(13)

Где (13)

Где максимальное значение силы тока

R0-омическое сопротивление контура

Изменение ЭДС и силы тока совершаются в одинаковых фазах.

Эффективная сила переменного тока равна силе такого постоянного тока, который имеет ту же мощность, что и данный переменный ток.

(14)

Аналогично рассчитывается эффективное (действующее) значение напряжения:

(15)

Работа и мощность переменного тока рассчитываются с помощью следующих выражений::

(16)

(17)

 

4.Емкостное сопротивление . В цепи постоянного тока конденсатор представляет собой бесконечно большое сопротивление: постоянный ток не проходит через диэлектрик, разделяющий обкладки конденсатора. Цепи переменного тока конденсатор не разрывает: попеременно заряжаясь и разряжаясь, он обеспечивает движение электрических зарядов, т.е. поддерживает переменный ток во внешней цепи. Т.о. , для переменного тока конденсатор представляет собой конечное сопротивление, называемое емкостным сопротивлением. Его величина определяется выражением:6

(18)

Где -круговая частота переменного тока, С-емкость конденсатора

Индуктивное сопротивление. Из опыта известно, что сила переменного тока в проводнике, свернутом в виде катушки, значительно меньше, чем в прямом провонике той же длины. Это означает, что помимо омического сопротивления проводник имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл его состоит в возникновении в катушке ЭДС самоиндукции, препятствующей изменениям тока в проводнике, а, следовательно, уменьшающей эффективный ток. Это равносильно появлению дополнительного (индуктивного) сопротивления. Его величина определяется выражением:

(19)

Где L-индуктивность катушки. Емкостное и индуктивное сопротивления называются реактивными сопротивлениями. На реактивном сопротивлении электроэнергия не расходуется, эти оно существенно отличается от активного сопротивления. Организм человека обладает только емкостными свойствами.

Полное сопротивление цепи, содержащей активное, индуктивное и емкостное сопротивления, равно

5.Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах переменный ток, как и постоянный, вызывает раздражающее действие на биологические ткани. Это обусловлено смещением ионов растворов электролитов, их разделением, изменением их концентрации в разных частях клетки и межклеточного пространства. Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды.

Так как специфическое физиологическое действие электрического тока зависит от формы импульсов, то в медицине для стимуляции нервной системы (электросон, электронаркоз), нервно-мышечной системы (кардио-стимуляторы, дефибрилляторы) и т.д. используют токи с различной временной зависимостью.

Воздействуя на сердце, ток может вызвать фибрилляцию желудочков, которая приводит к гибели человека. Пропускание тока высокой частоты через ткань используют в физиотерапевтических процедурах, называемых диатермией и местной дарсонвализацией.

Токи высокой частоты используются также и для хирургических целей (электрохирургия). Они позволяют прижигать «сваривать», ткани (диатермокоагуляция) или рассекать их (диатермотомия)

 

– Конец работы –

Эта тема принадлежит разделу:

Ремизов А.Н. Медицинская и биологическая физика

Ремизов А Н Медицинская и биологическая физика М г... Блохина М Е Эссаулова И А и др Руководство к лабораторным работам по... Кумыков В К Захохов Г М Физические методы в функциональной диагностике Нальчик КБГУ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция №7

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Колебания и волны
Гармонический осциллятор. Колебательные системы в биологии и медицине. Механические волны, их уравнение. Вектор Умова. Ультразвук, его применение в медицине. Эффект Доплера,

Колебательные системы в биологии и медицине
Большинство процессов, анализ которых дает основной объем диагностической информации, имеют колебательный характер. В технике это механические, электромагнитные и др. виды колебаний. В биологии и м

Механические волны
Механической волной называют механические возмущения, распространяющиеся в пространстве и несущие энергию. Уравнение волны выражает зависимость смещения колебательной точки, участвующей в

Ультразвук
Природа и свойства. УЗ-механические колебания и волны с частотой от 20кГц до 1010ГЦ. Распространение УЗ в среде сопровождается его поглощением. Чем больше поглощение УЗ, тем меньш

Эффект Доплера
Его суть заключается в изменении частоты звука, воспринимаемого наблюдателем, вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота о

Течение и свойства жидкостей
1. Идеальная жидкость. Основные определения. Движение идеальной жидкости. Уравнение неразрывности. Уравнение Бернулли. 2. Движение вязкой жидкости. Уравнение Ньютона. Формула Пуазейля.

Формула Пуазейля
Наибольшей скоростью обладают частицы, движущиеся вдоль оси трубы; самый близкий к трубе слой жидкости неподвижен. Для установления зависимости

Электростатика
1. Взаимодействие электрических зарядов в вакууме. Закон Кулона. Электрическое поле и его напряженность. Силовые линии электрического поля. 2. Электрический диполь. Поле диполя. 3

Работа перемещения заряда в электрическом поле. Потенциал.
На всякий заряд в электрическом поле действует сила, которая может перемещать этот заряд. Определить работу А перемещения точечного положительного заряда q из точки О в точку n, совершаемую силами

Контактные явления
1. Контактная разность потенциалов. Законы Вольта. 2. Термоэлектричество. 3. Термопара, ее использование в медицине. 4. Потенциал покоя. Потенциал действия и его распрост

Электромагнетизм
1. Природа магнетизма. 2. Магнитное взаимодействие токов в вакууме. Закон Ампера. 3. Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа. 4. Диа-, пар

Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.
Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают ег

Лекция №6
1. Действие магнитного поля на проводник с током 2. Движение заряженных частиц в электрическом поле. 3. Движение заряженных частиц в магнитном поле. 4. Электромагнитные с

Частица в электрическом поле
Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электр

Электрические колебания и электромагнитные волны
1. Электромагнитные волны 2. Закрытый колебательный контур.Формула Томсона. 3. Открытый колебательный контур. Электромагнитные волны. 4. Шкала электромагнитных волн. Клас

Эндоскопическая аппаратура и ее применение в клинической практике.
Эндоскопия-метод исследования полых органов и полостей тела с помощью специального прибора-эндоскопа, который вводится в организм через естественные отверстия или произведенные под наркозом небольш

Волновые свойства света
1. Интерференция света. 2. Дифракция света. Разрешающая способность оптических приборов. 3. Дифракция от одной щели. Дифракционные спектры. Дифракционная решетка.  

Лекция №11
1. Поляризация света. Закон Малюса. 2. Вращение плоскости поляризации. Оптически активные вещества.   1. Свет, излучаемый отдельным атомом, представ

Квантовые свойства света. Тепловое излучение тел, его законы.
Из всего многообразия электромагнитных излучений, видимых и невидимых человеческим глазом, можно выделить одно, которое присуще всем телам. Это излучение нагретых тел, или тепловое излучение. Оно в

Строение атома.
В 1911г. Резерфорд предложил ядерную модель атома, согласно которой весь положительный заряд и почти вся масса (>99,94%) атома сосредоточены в атомном ядре, размер которого ничтожно мал (~10

Дискретность энергетических состояний атома. Постулаты Бора.
Линейчатый характер спектров излучения и поглощения атомов свидетельствует о том, что атом может излучать (поглощать) энергию не в любых количествах, а только вполне определенными порциями (квантам

Квантовая теория строения атома водорода.
В атоме водорода вокруг ядра (протона), несущего заряд e, движется один электрон. Ядро можно считать неподвижным, поскольку его масса в 1840 раз больше массы электрона; орбиты электрона в первом пр

Рентгеновское излучение, его использование в медицине
1. Природа и свойства рентгеновского излучения. Закон Мозли. Интенсивность Р.И. 2. Взаимодействие рентгеновского излучения с веществом. Эффект Комптона.Закон Бугера. 3. Использова

Использование Р.И. в медицинской практике
3.1. Рентгеновская диагностика Рентгеновская диагностика основана на избирательном поглощении тканями и органами рентгеновского излучения. Рентгеноскопия. При рентгеноскопи

Лазерное излучение, его использование в медицине.
1. Оптические квантовые генераторы (ОКГ) 2. Природа и свойства лазерного излучения. 3. Воздействие лазерного излучения на организм. 4. Использование лазера в медицине.

Использование лазера в медицине
Высокоэнергетические лазеры применяются в качестве лазерного скальпеля в онкологии. При этом достигается рациональное иссечение опухоли с минимальным повреждением окружающих тканей, причем операцию

Магнито-резонансные явления, их применение в медицине.
1. Расщепление энергетических уровней в магнитном поле. Эффект Зеемана. 2. Резонансные методы исследования вещества. 3. Магнитный резонанс. 4. Электронный парамагнитный р

Магнитный резонанс
Если облучать вещество переменным э/м полем, то при некоторой частоте будет происходить резонансное поглощение энергии э/м поля, которое можно измерить экспериментально. На практике удобнее частоту

Основы ядерной физики. Понятия ядерной медицины.
1. Общие сведения об атомных ядрах. Изотопы. 2. Искусственная радиоактивность 3. Природа радиоактивного излучения. Альфа-, бета- и гамм-лучи. 4. Законы радиоактивного рас

Биологическое действие радиационного излучения на организм.
Под действием ионизирующих излучений происходят химические превращения вещества, получившие название радиолиза. В процессе воздействия ионизирующего излучения на живой организм образуются возбужден

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги