рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Система двух взаимно перпендикулярных плоскостей

Система двух взаимно перпендикулярных плоскостей - раздел Философия, Т.В. Хрусталева НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Обратимость Чертежа, Как Об Этом Говорилось Ранее, Т. Е. Однозначное Определе...

Обратимость чертежа, как об этом говорилось ранее, т. е. однозначное определение положения точки в пространстве по ее проекциям, может быть обеспечена проецированием на две взаимно перпендикулярные плоскости проекций.

1. Пространство делится на четверти двумя взаимно-перпендикулярными плоскостями.

2. Для получения изображения объекта на плоскости выбирается ортогональное (прямоугольное) проецирование.

3. Для преобразования изображений, полученных на взаимно перпендикулярных плоскостях, изображение на одну плоскость, следует считать неподвижным (плоскость p 2), а плоскость p 1 – вращающейся вокруг оси до совмещения с плоскостью p 2.

Рассмотрим две взаимно перпендикулярные плоскости проекций (рис. 2.1).

Плоскость p 1, расположенную горизонтально, называют горизонтальной плоскостью проекций, вертикальную плоскость p 2 – фронтальной плоскостью проекций. Х – линия пересечения плоскостей проекций, которую называют осью проекций. Ось проекций делит каждую плоскость на две полуплоскости: p 1 – положительную и отрицательную, p 2 – положительную и отрицательную. Плоскости делят окружающее пространство на четыре четверти – I, II, III, IV (рис. 2.1 и 2.2).

Рис. 2.1 Рис. 2.2

§ 2. Точка в системе двух плоскостей проекций p 1 и p 2

Построение проекций точки (и любого геометрического образа) в системе двух взаимно перпендикулярных плоскостей проекций осуществляется ортогональным проецированием на каждую плоскость.

Рассмотрим построение проекций некоторой точки А, расположенной в первой четверти системы p1/p2 (рис. 2.3). Проведя из А перпендикуляры (проецирующие лучи из бесконечно удаленных центров S1 и S2) к плоскостям проекций p1 и p2, получаем проекции точки А: горизонтальную проекцию А1, и фронтальную проекцию А2.

Если спроецировать отрезки лучей АА1 из центра S2 и АА2 из центра S1 , то получаем две взаимно перпендикулярные прямые А2Ах и А1Ах, соответственно. Эти прямые принято называть линиями связи проекций.

Таким образом, точка А в пространстве характеризуется двумя проекциями А2 и А1 на плоскости p 1/p 2 и двумя линиями связи А2Ах и А1Ах (рис. 2.4).

Рис. 2.3 Рис. 2.4

Проверим, верна ли обратная задача.

Если даны проекции А1, А2 некоторой точки А, то определяют ли они положение точки в пространстве (рис. 2.4).

Решение:

1. Проведем из точки А1 перпендикуляр к плоскости p 1 (рис. 2.5).

2. Проведем из точки А2 перпендикуляр к плоскости p 2 (рис. 2.6).

3. Фигура АА1АхА2 имеет:

 

Рис. 2.5 Рис. 2.6

Следовательно, точка А есть точка, принадлежащая двум пересекающимся перпендикулярам, лежащим в одной плоскости, и она единственная.

Таким образом, доказано, что две проекции определяют положение точки в пространстве.

§ 3. Образование комплексного чертежа (эпюра)

Для удобства пользования полученными изображениями от пространственной системы плоскостей перейдем к плоскостной.

Для этого:

1. Применим способ вращения плоскости p1 вокруг оси Х до совмещения с плоскостью p2 (рис. 2.7)

2. Совмещаем плоскости p1 и p2 в одну плоскость чертежа (рис. 2.8)

Рис. 2.7 Рис. 2.8

Проекции А1 и А2 располагаются на одной линии связи перпендикулярной оси Х. Эта линия называется линией проекционной связи (рис. 2.9).

Рис. 2.9

Так как плоскость проекций считается бесконечной в пространстве, то границы плоскости p1, p2 можно не изображать (рис. 2.10).

Рис. 2.10

В результате совмещения плоскостей p1 и p2 получается комплексный чертеж или эпюр (от франц. epure чертеж), т.е. чертеж в системе p1 и p2 или в системе двух плоскостей проекций. Заменив наглядное изображение эпюром, мы утратили пространственную картину расположения плоскостей проекций и точки. Но эпюр обеспечивает точность и удобоизмеряемость изображений при значительной простоте построений. Чтобы представить по эпюру пространственную картину, требуется работа воображения: например, по рис. 2.11 надо представить картину, изображенную на рис. 2.12.

При наличии на комплексном чертеже оси проекций по проекциям А1 и А2 можно установить положение точки А относительно p1 и p2 (см. рис. 2.5 и 2.6). Сравнивая рис. 2.11 и 2.12 нетрудно установить, что отрезок А2 АХ – расстояние от точки А до плоскости p1, а отрезок А1АХ – расстояние от точки А до p2. Расположение А2 выше оси проекций означает, что точка А расположена над плоскостью p1. Если А1 на эпюре расположена ниже оси проекций, то точка А находится перед плоскостью p2. Таким образом, горизонтальная проекция геометрического образа определяет его положение относительно фронтальной плоскости проекций p2, а фронтальная проекция геометрического образа – относительно горизонтальной плоскости проекций p1.

Рис. 2.11 Рис. 2.12

 

§ 4. Характеристика положения точки в системе p 1 и p 2

Точка, заданная в пространстве, может иметь различные положения относительно плоскостей проекций (рис. 2.13).

Рис. 2.13

Рассмотрим возможные варианты расположения точки в пространстве первой четверти:

1. Точка расположена в пространстве I четверти на любом расстоянии от оси Х и плоскостей p 1p 2, например точки А, В (такие точки называются точками общего положения) (рис. 2.14 и рис. 2.15).

Рис. 2.14 Рис. 2.15

2. Точка С принадлежит плоскости p2, точка D – плоскости p1 (рис. 2.16 и рис. 2.17)

Рис. 2.16 Рис. 2.17

3. Точка K принадлежит одновременно и плоскости p1 и p2, то есть принадлежит оси Х (рис. 2.18):

Рис. 2.18

На основании вышеизложенного можно сделать следующий вывод:

1. Если точка расположена в пространстве I четверти, то ее проекция А2 расположена выше оси Х, а А1 – ниже оси Х; А2А1 – лежат на одном перпендикуляре (линии связи) к оси Х (рис. 2.14).

2. Если точка принадлежит плоскости p2, то ее проекция С2 С (совпадает с самой точкой С) а проекция С1 Х (принадлежит оси Х) и совпадает с СХ: С1 СХ.

3. Если точка принадлежит плоскости p1, то ее проекция D1 на эту плоскость совпадает с самой точкой D D1, а проекция D2 принадлежит оси Х и совпадает с DХ: D2 DХ.

4. Если точка принадлежит оси Х, то все ее проекции совпадают и принадлежат оси Х: К К1 К2 КХ.

Задание:

1. Дать характеристику положения точек в пространстве I четверти (рис. 2.19).

Рис. 2.19

2. Построить наглядное изображение и комплексный чертеж точки по описанию:

а) точка С расположена в I четверти, и равноудалена от плоскостей p1 и p2.

б) точка М принадлежит плоскости p2.

в) точка К расположена в первой четверти, и ее расстояние до p1 в два раза больше, чем до плоскости p2.

г) точка L принадлежит оси Х.

3. Построить комплексный чертеж точки по описанию:

а) точка Р расположена в I четверти, и ее расстояние от плоскости p2 больше, чем от плоскости p1.

б) точка А расположена в I четверти и ее расстояние до плоскости p1 в 3 раза больше, чем до плоскости p2.

в) точка B расположена в I четверти, и ее расстояние до плоскости p1=0.

4. Сравнить положение точек относительно плоскостей проекций p1 и p2 и между собой. Сравнение ведется по характеристикам или признакам. Для точек эти характеристики есть расстояние до плоскостей p1; p2 (рис. 2.20).

Рис. 2.20

Применение вышеизложенной теории при построении изображений точки может быть осуществлено различными способами:

  • словами (вербальное);
  • графически (чертежи);
  • наглядное изображение (объемное);
  • плоскостное (комплексный чертеж).

Умение переводить информацию с одного способа на другой способствует развитию пространственного мышления, т.е. с вербального в наглядное (объемное), а затем в плоскостное, и наоборот.

Рассмотрим это на примерах (табл. 2.1 и табл. 2.2).

Таблица 2.1

– Конец работы –

Эта тема принадлежит разделу:

Т.В. Хрусталева НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Оглавление... Предисловие... Введение Общие требования и методические рекомендации по изучению курса начертательная геометрия...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Система двух взаимно перпендикулярных плоскостей

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ
Рекомендовано Дальневосточным региональным учебно-методическим центром в качестве учебного пособия для студентов специальности 210700 “Автоматика, телемеханика и связь на жел

Геометрические образы
1. Плоскость проекций: p – произвольная; p1 – горизонтальная; p2 – фронтальная; p3 – профильная; S – центр проец

Обозначения теоретико-множественные
Сущность метода проецирования заключается в том, что проекция Аp некоторого геометрического обр

Проецирование центральное
Центральным называется проецирование, при котором все проецирующие лучи выходят из одной точки S, называемой центром проецирования. На рис. 1.3 дан пример центрального проецирования, где p – плоско

Проецирование параллельное
Параллельным называется проецирование, при котором все проецирующие лучи между собой параллельны. Параллельные проекции могут быть косоугольными (рис.1.7) и прямоугольными (рис. 1.8).

Свойства ортогональных проекций
1. Проекция точки есть точка (рис. 1.9). Рис. 1.9 2. Проекция прямой в общем

Обратимость чертежа. Метод Монжа
Рассмотренный в § 2 и § 3 способ проецирования на одну плоскость проекций дает возможность решить прямую задачу (имея предмет, можно найти его проекцию), но не позволяет решить обратную задачу (име

Система трех взаимно перпендикулярных плоскостей
На практике исследования и построения изображений система двух взаимно перпендикулярных плоскостей не всегда дает возможность однозначного решения. Так, например, если переместить точку А вдоль оси

Комплексный чертеж и наглядное изображение точки в I–IV октантах
Рассмотрим пример построения точек А, В, С, D в различных октантах (табл. 2.4). Таблица 2.4 Октант Наглядное изображение

Общие положения
Линия – это одномерный геометрический образ, имеющий длину; множество всех последовательных положений движущейся точки. По определению Эвклида: "Линия же – длина без ширины". Пол

Прямые уровня
Определение Наглядное изображение Комплексный чертеж Горизонталью называют всякую линию, параллельную горизонтальной

Проецирующие прямые
Определение Наглядное изображение Комплексный чертеж Горизонтально проецирующей прямой называют прямую, перпендикулярную

Построение третьей проекции отрезка по двум заданным
В нашем примере мы будем рассматривать построение прямой общего положения в первой четверти (табл. 3.3). Таблица 3.3 Вербальная форма

Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций
Построение проекций отрезка прямой общего и частного положения позволяет решать не только позиционные задачи (расположение относительно плоскостей проекций), но и метрические – определение длины от

Определение натуральной величины отрезка прямой общего положения
Для определения натуральной величины отрезка прямой линии общего положения по ее проекциям применяют метод прямоугольного треугольника. Рассмотрим последовательность этого положения (табл.

Общие положения
Две прямые в пространстве могут иметь различное расположение: пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом; могут быть параллельны

Определение видимости прямых относительно плоскостей проекций
Для определения видимости прямых относительно плоскостей проекции используются конкурирующие точки. Рассмотрим комплексный чертеж скрещивающихся прямых а и b (рис. 4.1 и рис. 4.2). Определим, какая

Алгоритм построения прямых пересекающихся
Вербальная форма Графическая форма 1. Через точку К провести прямую h|| p1 и пересекающую прямую а

Плоскости проецирующие
Определение Наглядное изображение Комплексный чертеж Горизонтально-проецирующей плоскостью называют плоскость, перпендику

Плоскости уровня
Характеристика Наглядное изображение Эпюр Фронтальнаяплоскость – это плоскость, параллельная плоскости p2. Эта

Прямые особого положения в плоскости
Прямыми особого положения в плоскости являются горизонталь h, фронталь f и линии наибольшего наклона к плоскостям проекций. Рассмотрим графическое изображение этих линий (табл. 5.6). Та

Алгоритм построения фронтали
Вербальная форма Графическая форма Дана плоскость a (a|| b), следовательно, a1 || b1; a2

Алгоритм построения второй проекции точки К
Вербальная форма Графическая форма Плоскость a – задана плоской фигурой a (D АВС), K2 – фронтальная проекция точки K

Алгоритм построения плоскости, параллельной данной
Вербальная форма Графическая форма 1. Для решения задачи в данной плоскости Р(D АBC) берутся любые пересекающиеся прямые. Например, АВ

Плоскости пересекающиеся
Две плоскости пересекаются по прямой линии. Для построения линии их пересечения необходимо найти две точки, принадлежащие этой линии. Задача упрощается, если одна из пересекающихся плоскостей заним

Алгоритм построения прямой, параллельной плоскости
Вербальная форма Графическая форма 1. Построим в плоскости Р(D АВС) прямую А1, которая принадлежит плоскости Р

Алгоритм пересечения прямой линии с плоскостью общего положения
Вербальная форма Графическая форма 1. Чтобы построить точку пересечения прямой l с плоскостью

Алгоритм построения перпендикуляра к плоскости
Вербальная форма Графическая форма 1. Для того чтобы построить перпендикуляр к плоскости Р(D АВС) через точку D, необходимо сначала по

Алгоритм построения плоскости, перпендикулярной данной
Вербальная форма Графическая форма 1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонтал

К главе 3
1. Построить проекции прямой АВ (рис. 3), если она: а) параллельна p1; б) параллельна p2; в) параллельна ОХ; г) перпендикулярна p1

К главе 5
В плоскости, заданной двумя параллельными прямыми, построить фронталь на расстоянии 15 мм от p1 (рис. 9):

К главе 6
1. Дана плоскость Р(а|| b) и фронтальная проекция m2 прямой m, проходящей через точку D. Построить горизонтальную проекцию прямой m1 так, чтобы прямая m была параллельна плоск

Тесты к главе 3
Выберите соответствие обозначения отрезка АВ его изображению (рис. 6): 1. АВ || p 1 2. АВ || p 2 3. АВ ^ p 1 4.

Тесты к главе 6
1. На каком из чертежей (рис. 12) плоскость S (D АВС) параллельна плоскости Р(m C n).

Рекомендуемый библиографический список
1. ГОСТ 2.001-70. Общие положения // В сб. Единая система конструкторской документации. Основные положения. – М.: Изд-во стандартов, 1984. – С. 3–5. 2. ГОСТ 2.104-68. Основные надписи // В

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги