рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Обработка результатов прямых измерений

Обработка результатов прямых измерений - раздел Образование, ОБЩИЕ СВЕДЕНИЯ   Обычно В Реальных Измерениях Присутствуют И Случайные И Систе...

 

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

 

(1)

 

Случайная погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Пусть в результате прямых измерений физической величины получен ряд ее значений: x1, x2, ..., xn.

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

 

(2)

 

Здесь xi – результат i-го измерения, n – число измерений. В случае малого n правильная оценка погрешности основана на использовании распределения Стьюдента (t–распределения). Случайная ошибка измерения может быть оценена величиной случайной абсолютной погрешности Dxсл., которую вычисляют по формуле

 

(3)

 

где t(a, n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a. Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятных для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного – 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Из таблицы видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a. Практически выбирают a = 0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

 

Таблица 1

 

Число Доверительная вероятность a
измерений n 0,6 0,7 0,95 0,98
1,38 2,0 12,7 31,8
1,06 1,3 4,3 7,0
0,98 1,3 3,2 4,5
0,94 1,2 2,8 3,7
0,92 1,2 2,6 3,4
0,90 1,1 2,4 3,1
0,90 1,1 2,4 3,0
0,90 1,1 2,3 2,9
0,88 1,1 2,3 2,8
0,84 1,0 2,0 2,3

 

Поясним смысл терминов абсолютная погрешность Dx и доверительная вероятность a, используя числовую ось. Пусть среднее значение измеряемой величины <x> (рис. 1), а вычисленная абсолютная погрешность Dx. Отложим Dx от <x> справа и слева. Полученный числовой интервал от (<x> − Δx) до (<x> + Dx) называется доверительным интервалом. Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

 

 
 
<x> − Δx <x> <x> + Δx x


Рис. 1

 

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины xист. попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a.

Вычислив величину абсолютной погрешности Dx по формуле (1), истинное значение x измеряемой физической величины можно записать в виде x = <x> ± Dx.

Величина абсолютной погрешности Δx результата измерений еще не определяет точности измерений. Для оценки точности измерения физической величины подсчитывают относительную погрешность, которую обычно выражают в процентах:

ε (4)

 

За меру точности измерения принимают величину 1/ε. Следовательно, чем меньше относительная погрешность ε, тем выше точность измерений.

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз (обычно 5).

2. Вычислить среднее арифметическое значение <x> по формуле (2).

3. Задать доверительную вероятность a (обычно берут a = 0,95).

4. По табл. 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (3) и сравнить ее с аппаратурной погрешностью. Для дальнейших вычислений взять ту из них, которая больше (см. пример на с. 11).

6. По формуле (4) вычислить относительную ошибку e.

7. Записать окончательный результат

 

x = <x> ± Dx

 

с указанием относительной погрешности e и доверительной вероятности a.

Обычно кроме прямых измерений в лабораторной работе присутствуют косвенные измерения.

 

– Конец работы –

Эта тема принадлежит разделу:

ОБЩИЕ СВЕДЕНИЯ

Погрешности измерений физических величин Под измерением понимается сравнение измеряемой величины с... Классификация погрешностей измерений...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Обработка результатов прямых измерений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОБЩИЕ СВЕДЕНИЯ
  Выполнение лабораторных работ является обязательной составной частью при изучении дисциплины «Физика». Настоящий физический практикум по разделу «Механика» составлена в соответствии

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ
  На каждое лабораторное занятие студент должен приносить с собой: тонкую тетрадь, физический практикум, в котором дано описание выполняемой лабораторной работы, калькулятор,

ФОРМА ОТЧЕТА
  Отчет каждой работы следует готовить в отдельной тонкой тетради (можно с двумя листами в зависимости от объема работы). Первый лист оформляется как титульный:  

Погрешности измерений физических величин
  Под измерением понимается сравнение измеряемой величины с другой величиной, принятой за единицу измерения. При измерении приходится выполнять три последовательные операции:

Обработка результатов косвенных измерений
  Пусть искомая физическая величина y связана с другими величинами x1, x2, ..., xn некоторой функциональной зависимостью

Действия с приближенными числами
  Многие считают, чем больше цифр содержит вычисленная или измеренная величина, тем она точнее. Вопрос о различной точности вычисления очень важен, так как завышение точности вычислен

Построение графиков
  Результаты, полученные в ходе выполнения лабораторной работы, часто ва

Измерительные приборы и учет их погрешностей
  Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, ч

Краткие теоретические сведения
  Случайной называется величина, изменяющаяся от опыта к опыту нерегулярно и, на первый взгляд, беспорядочно. Результат каждого отдельного измерения случайной величины практически неп

Измерения и обработка результатов
  В данной работе моделирование случайной величины осуществляется следующим образом. При помощи обычных часов с секундной стрелкой задают некоторый промежуток времени t и измер

Краткие теоретические сведения
  По второму закону Ньютона произведение массы частицы на ускорение равно действующей силе:  

Описание установки и метода измерений
  Соотношения (2) и (3) являются следствиями второго закона Ньютона и их можно проверить на машине Атвуда.

Порядок выполнения работы
  1. Ознакомиться с машиной Атвуда. 2. Скомпенсировать силу трения в блоке, добавляя к правому грузу, движущемуся вниз, небольшой грузик (кусочек пластилина или проволоки). П

Порядок выполнения работы
  1. Ознакомиться с машиной Атвуда. 2. Скомпенсировать силу трения в блоке (согласно п. 1 задания 1). 3. На правый груз поместить перегрузок известной массы m

ПРИ СОУДАРЕНИИ ШАРА С ПЛОСКОЙ СТЕНКОЙ
  Цели работы:измерить время соударения металлических тел, определить среднюю силу удара и коэффициента восстановления скорости. Оборудование:

Описание установки и метода измерений
  Металлический шар 1 подвешен на тонкой проволоке (рис. 1). При вертика

Порядок выполнения работы
  1. Включить в электросеть электронный секундомер. Прогреть прибор в течение одной минуты. 2. Отвести шар от положения равновесия на угол α = 20–30о.

Описание установки и метода измерений
    О

Порядок выполнения работы
  1. Провести корректировку осевой установки шаров. Для этого шар, который расположен выше, повернуть так, чтобы риски на шарах находились на одном уровне. 2. Регулировочными

Описание установки и метода измерений
  Баллистический маятник представляет собой цилиндр массой M, под

Порядок выполнения работы
  1. Масса пули и маятника указаны на установке. 2. Измерить линейкой расстояние l от точки подвеса до точки крепления нити к маятнику. 3. Привести маятник в

Порядок выполнения работы
  1. Сделать 5 выстрелов из пистолета, расположенного на столе, в ящик с песком или лист бумаги, расположенный на полу. После каждого выстрела по отметке пули на песке, или на листе,

Описание установки и метода измерений
  Маховик состоит из массивного диска и шкива, насаженных на вал. Вал закреплен в подшипниках. На шкиве намотана нить (на некоторых установках роль шкива выполняет вал), к свободному

Порядок выполнения работы
  1. Отрегулировать длину нити так, чтобы груз не касался основания штатива. 2. Измерить штангенциркулем диаметр шкива, определить массу груза m. Результаты записать в

Описание установки и метода измерений
  Устройство установки показано на рис. 1. Основание 1 оснащено регулиру

Порядок выполнения работы
  1. На диске маятника укрепить произвольно выбранное кольцо. 2. Произвести корректировку установки маятника, обращая внимание на то, чтобы его ось была параллельна основанию

И ОПРЕДЕЛЕНИЕ МОМЕНТА СИЛЫ ТРЕНИЯ
  Цели работы: построить для маховика график зависимости углового ускорения b от момента силы натяжения Мн и определить из него момент силы трения

Описание установки и метода измерений
  Маховик состоит из диска 1 и шкива 2, насаженных на вал (рис. 1). Вал

Порядок выполнения работы
  1. Измерить штангенциркулем диаметр D шкива. 2. Вращая маховик, поднять висящий на нити груз на высоту h. Измерить высоту с помощью линейки (отсчет вести по н

Описание установки и метода измерений
  Маятник Обербека (рис. 1) представляет собой маховик, которому придана

Порядок выполнения работы
  1. Определить массу грузов m1 и m2 (m1 взять примерно вдвое больше m2). Определить высоту h, с которой

Описание установки и метода измерений
  Твердое тело, подвешенное на упругой нити, будет совершать крутильные колебания, если его повернуть на некоторый угол относительно вертикальной оси, совпадающей с нитью подвеса, и з

Порядок выполнения работы
  1. Поворотом нижнего диска привести систему в колебательное движение. Следите за тем, чтобы центр масс диска не смещался в сторону, т. е. перемещался вертикально. Амплитуда колебани

Описание установки и метода измерения
  Большинство косвенных методов измерения ускорения свободного падения g основано на использовании формулы для периода гармонических колебаний физического маятника &nb

Порядок выполнения работы
  1. Опорную призму укрепить на конце стержня. Поместить маятник ребром опорной призмы на подставку и привести в колебательное движение так, чтобы амплитуда колебаний не превышала ~ 6

Краткие теоретические сведения
  Под влиянием внешних сил всякое твердое тело деформируется, т. е. изменяет свою форму и размеры. Упругой называется деформация, исчезающая с прекращением действия силы. Так, упруго

Продифференцировав дважды функцию (2) по времени, получим
  а = − w2Acos(wt + a) = − w2x. (4)   После подстановки (4) в (3) находим w =

Порядок выполнения работы
  ЗАДАНИЕ № 1 Рис. 1 Цель работы: проверить закон Гука.   1. К нижнему концу пружины подвешивать разные грузы массы m

Краткие теоретические сведения
  Большинство косвенных методов измерения ускорения свободного падения g основано на использовании формулы для периода гармонических колебаний физического маятника &nb

Описание установки и метода измерений
В основании 1 (рис. 1) закреплена колонка 2, на ней зафиксирова

Порядок выполнения работы
  1. Закрепить один груз вблизи конца, а другой – вблизи середины стержня. 2. Закрепить призмы так, чтобы они были обращены друг к другу. Одну из них поместить вблизи свободн

Краткие теоретические сведения
  Если натянуть струну и возбудить в ней колебания, то по струне побегут волны, которые, отражаясь от закрепленных концов и, складываясь друг с другом, создают сложную картину колебан

Описание установки
  Для возбуждения колебаний струны в работе используется метод резонанса. Струна приводится в движение силой, действующей на проводник с током в магнитном поле. Постоянное магнитное п

Порядок выполнения работы
  1. Подключить установку к сети 220 В. Нажать кнопку «СЕТЬ». 2. Дать электронному блоку в течение 1–2 минут войти в режим. 3. Установить натяжение струны F =

Краткие теоретические сведения
  Процесс распространения колебаний в упругой среде называется волной. Расстояние, на которое распространяется волна за время, равное периоду колебания, называется длиной волны. Длина

Описание установки
  Общий вид установки показан на рис. 2. На конце металлической трубы 1 жестко закреплен микрофон 2. Вдоль трубы при помощи стержня 3 может свободно перемещаться электродинамический г

Порядок выполнения работы
  1. Подключить динамик к генератору электрических колебаний звуковой частоты, а микрофон – к осциллографу. Включить генератор и осциллограф в сеть. Частоту генератора задавать пример

Порядок выполнения работы
        Aτ, град

РАСЧЕТ СЛУЧАЙНОЙ ПОГРЕШНОСТИ НА КАЛЬКУЛЯТОРЕ
  Случайная погрешность влияет на окончательный результат измерений, в равной степени завышает либо занижает его. Поэтому необходимо указать интервал на числовой оси (см. с. 8), в кот

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги