рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла.

Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла. - раздел Образование, Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах Холодная Деф. Проводиться При Тем-Рах Ниже Тем-Ры Рекристаллиз. И Сопровождае...

Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. Пригорячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.

Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=a*Tпл , а=0,2…0,6.

Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.

23.Компоненты,фазы и структурные составляющие в системе Fe-C (Fe-Fe3C)

Выше линии АБСД-жидкость, Ф – феррит, А-аустенит, Ц – цементит, П – перлит, Л – ледобурит (эвтектика,А+Ц,при низк температурах П+Ц). Компонента 2: жидкость + С, L+ Ц;

фазы: L, Ф, А, Ц, графит, П – эвтектоид (Ф+Ц,перлит)
Вид линий диаграммы Fe-Cзависит от типа образующихся в процессе кристаллизации фаз и от того,какие превращения происходят при охлаждении твердого сплава. Поск-ку С обладает способностью в атомарном виде размещаться в крист решетке железа, то при затвердевании расплава могут образовываться твердые растворы внедрения на основе решеток 2х высокотемпературных модификаций железа: δ-Fe, (гамма) γ- Fe . Если углерода меньше 0,5 %,то в начале из расплава кристализ-ся δ – твердый раствор, который при последующем охлаждении перекристализ-ся в γ-тверд раствор. В сплавах, содержащих больше 0,5 % ,но меньше 4,3 %, из расплава сразу кристалл-ся γ-тверд раствор. Поскольку он так же как и δ – твердый раствор не может существовать при низких температурах,то γ-тверд раствор при охлаждении превращается в твердый раствор α (альфа). Т.о. сплавы железа с углеродом могут существовать кристаллы 3х тверд растворов: δ,γ и α, образующихся на основе 3х аллотропических модификаций чистого железа. Алоферрит тверд наз-ся ферритом и содержит больше 0,025 % углерода при темп 727 градусов. По своим св-вам он близок к чистому железу. γ-тверд раствор наз-ся аустенитом и он может содержать в себе до 2,14 % углерода. Помимо тверд раст-ров железа и углерода образуется тверд хим соед-ния Fe3C –карбид железа (цементит).

 

 

24 25. Диаграмма состояния железо-цементит (Fe-Fe3C) (Стали)

Ж+F – ферритная область.

F+A – ферритная + аустенитная.

Л – ледебурит

ЦI – цементит первичный.

Железо – металл, плавящийся при температуре 1539оС и относящийся к полиморфным.

Полиморфизм – это возможность существования металлов в различных кристаллических модификациях.

В интервале 1539 оС – 1392 оС железо имеет ОЦК решетку.

В интервале 1392 оС – 911 оС железо имеет ГЦК решетку.

При температуре менее 911 оС железо имеет ОЦК решетку.

При температуре 768 оС железо из ферромагнитного переходит в паромагнитном состояние, т.е. становится немагнитным. Это т.н. точка Кюри.

Железо сравнительно мягкий металл: sв=250 МПа, НВ 80.

Цементит – химическое соединение, отвечающее формуле Fe3C. Образуется при строго определенном количестве атомов Fe и C, причем доля C составляет 6,67%. Цементит является наиболее твердой фазой железоуглеродистых сплавов (НВ 800). При нагреве в определенных условиях цементит может распадаться с образованием железа и углерода в свободном состоянии в виде графита. Способность цементита к разложению положена в основу получения чугунов.

На диаграмме состояния железа-цементит линия ABCD – линия липидус, а AHIECF – солидус.

На диаграмме состояния есть две области, прилегающие к ординате, на которых откладывают температуру компонента железа, область феррита и область аустенита. Вообще на диаграмме можно выделить 4 фазы: жидкость, феррит, аустенит и цементит.

Феррит – твердый раствор углерода в a-железе. Феррит имеет ОКЦ решетку. Чисто ферритные области: AHN (1539 оС – 1392 оС) (высоко температурный феррит) и AGPQ (911 оС и до комнатной).

Аустенит – твердый раствор углерода в g-железе. Имеет ГЦК решетку. Область чистого аустенита MIESG.

На диаграмме видно три горизонтальных линии, при температуре которых протекают нонвариантные рекации (С=0).

По линии HIB при Т=1499 оС протекает перитектическая реакция, в результате которой жидкость состава точки B взаимодейст­вует с кристаллами феррита в точке Н с образованием кристаллов аустенита в точке I.

По линии ECF при Т=1147 оС протекает эвтектическая реакция, в результате которой жидкость в точке C распадается на аустенит в точке E и цементит. Механическая смесь аустенита и цементита в интервале T=1147 оС – 727 оС получила название ледебурит.

По линии PSK при Т=727 оС протекает эвтектоидная реакция, в результате которой аустенит в точке S распадается на феррит в точке P и цементит. Механическая смесь феррита и цементита получила называние перлит.

Эвтектика отличается от эвтектоида тем, что первая протекает с участием жидкой фазы. Вторая является результатом распада твердого раствора. В связи с тем, что при температуре меньше 727 оС аустенита быть не может, ледебурит видоизменяется и в интервале T=727 оС – 20 оС ледебурит – механическая смесь из перлита и цементита.

На диаграмме видны линии ограниченной растворимости (PQ и SE).

При Т=20 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,01% (в точке Q). При Т=727 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,02% (в точке P). Следовательно, при охлаждении избыток атомов углерода должен выделиться из ОЦК решетки, но не в чистом виде, а в виде цементита третичного. Аналогичное наблюдается и при растворении углерода в ГЦК решетке, если при Т=727 оС (точка S) углерод составляет 0,8%, то при Т=1147 оС (точка Е) – 2,14%. При охлаждении избыток атомов углерода должен выделиться из ГЦК решетки, но не в чистом виде, а в виде цементита вторичного. По химическому составу цементит первичный, вторичный и третичный не отличаются. Это для того, чтобы отличить цементит, выделившийся из жидкости, из аустенита и из феррита.

Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталь. Стали подразделяются на доэвтектоидные, с содержанием углерода до 0,8% (феррит + перлит), эвтектоидные – 0,8% (перлит), заэвтектоидные –от 0,8% до 2,14% (перлит + цементит II). Сплавы железа с углеродом с содержанием углерода более 2,14% называют чугунами: доэвтектоидные –от 2,14% до 4,3% (перлит + ледебурит + цементит), эвтектический –4,3% (ледебурит), заэвтектический – от 4,3% до 6,67% (ледебурит + цементит I).

 

по лекции: Линии,образующие треуг-ки в левом углу связана с аллотропическим превращением железа и перекристализ-ей δ – тверд раствора в γ-тверд раствор. эта фаза-переход не играет почти никакой роли при тех обработке стали. Диагр сост-я Fe – Ц представляет собой как бы 2 совмещенные и немного сдвинутые одна относит-но другой диаграммы с ограниченной растворимостью. Верхняя диагр относится к процессам первичной кристал-ции выше линии ЕСF, а ниже – к процессам вторичной крист-ции, т.к. эти процессы происходят в тверд состоянии. Поск-ку С способен растворяться в решетке γ-Fe до 2,14 %,то при кристалл-ции жид сплавов,содержащих не более 2,4 % углерода, из жид-сти будут появляться кристаллы трерд раствора аустенита γ-Fe различной концентр-ции в зависимости от состава сплава. Линии ВС будет соответствовать началу кристалл-ции аустенита,а линия JЕ – концу кристалл-ции. При концентрации сплава более чем 2,14% С, т.е. правее точки Е, избыточный С уже не может размещаться в крист-кой решетке железа; образует кристаллы Fe3C. Т.о для сплавов,расположен-х правее т-ки Е, в результате кристалл-ции должна появл-ся мех смесь аустенита и цементита.Если состав сплава будет точно соответствовать 4,3% С, то при крист-ции при t=1147 одновременно будут возникать кристаллы аустенита и цементита,образуя эвтектическую смесь,наз-мую ледебуритом. Кристал-ция сплавов,лежащих по составу между точками Е и С, начнется с образования аустенита. В процессе охлаждения состав как жидкой так и твердой фазы будет меняться и при достижении t=1147 линии ЕСF состав жидкости будет соответствовать 4,3% С.а тверд фаза аустенита – 2,14%. Это положение справедливо для любых сплавов из линии ЕСF. На линии солидус ЕСF из жидкости будет кристаллизоваться ледебурит. Аналогично будет происходить кристалл-ция сплавов,лежащих правее тоски С ,с той лишь разницей,что вместо аустенита будет выделяться Цементит1; состав жид-сти будет меняться по кривой ДС, и при достижении t=1147 из оставш-ся жид-сти будет о5 кристал-ся ледебурит.Линия ЕСF наз эвтектической линией.

Сплавы железа и С, содержащие с менее чем 2,14% С, наз-ся сталями. Все стали при высокой температуре имеют структуру аустенита и, ввиду его хорошей пластичности, стали обабатыв-ся давлением.Если содержание С будет больше,чем 2,14%, то в струк-ре появл-ся хрупкая ледебуритная эвтектика, и обработка давлением обычными способами становится невозможной.Но существуют способы…Понижение температуры вызывает ряд превращений аустенита,вследствие которых он перестает существовать. Превращения происходят по-разному ,в зависимости от содержания С в сплаве.Если сталь содержит менее,чем 0,8 %,т.е. правее точки S , то при охлаждении до температуры,соответствующей линии GS, начинается перекристал-ция аустенита с образованием зерен перлита. Точка G на температурной оси чистого железа (911 градусов) соответствует температуре аллотропического превращения γ-Fe в α-Fe.Увеличение конц-ции С снижает температуру аллотропического превращения. По мере охлаждения сплавов кол-во феррита увелич-ся , а аустенита-уменьшается. Одновременно увел-ся концентр-ция С в аустените,что можно определить,используя правило отрезков;Но при этом увел-ся так же и соед-ние С и в феррите до 0,025%. Содержание С в аустените (А) будет 0,8%,а в феррите (Ф) – 0,025%.В А с С 0,8% при охлаждении до 727 гр одновременно происходит образование Ф, вследствие аллотропного превращения и образование Ц.Поск-ку С уже не может находиться в решетке железа в прежнем количестве,то образование смеси Ф и Ц происходит по тем же законам,что и эвтектические смеси, с тем же различием,чтов данном случае эта дисперсная механич смесь разнотипных кристаллов возникает из тверд,а не из жидкого состояния,поэтому такая мех смесь наз эвтектоидом. Эвтектоид,состоящий из мех смеси Ф и Ц, наз перлитом. Т.о образом происходит превращение и для сплавов, содержащих > чем 0,8%С, за исключением сплавов,лежащих левее точки Р,т.к. в етой области содержание С не превышает 0,025% и струк-ра будет представлять из ся Ф. При температуре ниже 727 гр РQ из перлита будет выделяться ЦIII 1%. Подобным образом превращения будут происходить в сплавах,лежащих правее точки Е. При охлаждении сплавов с 1147 до 727 гр концентр-ция С в избыточном А, не входящем в эвтектику и в А эвтектичного состава, будет изменяться в соответ-вии с линией ЕS, в результате чего образ-ся кристалл ЦII, а концентрация С снизится до 0,8% при 727гр,т.е. А приобретает перлитную конц-цию и превращ-ся в эвтектоид.На линии РSK 727гр образуется перлит и онаназ-ся перлитной линией. Точка С и S, в которых весь объем сплава превращается в эвтектику, наз-ся (С) эвтектической точкой и эвтектоидной (S).

Классификация сплава системы железо-Ц. Все сплавы данной системы делят на 3 большие группы: 1)технической железо;2)стали и 3)чугуны. Рассмотрим 2)стали – Fe с С, в котором содержание С больше предельной растворимости в α-Fe 0,025% и меньше его предельной растворимости в γ-Fe 2,14% между точками Р и Е. Принципиальное отличие технического железа от стали заключаеца в том,что в стали присутствует эвтектоидная смесь- перлит,а в тех железе его нет.

Стали в свою очередь делятся на 3 группы: 1)0,025-0,8% - в структуре присутствует Ф+П (доэвтектоидные стали); 2) 0,8% С , структура- чистый П (эвтектоидные стали); 3) 0,8-2,14 %, состоит из П и ЦII (заэвтектоидные стали).

 

25. 3)чугуны – сплавы Fe с С , в которых соединение С больше его растворимости в γ-Fe,т.е. все что правее точки Е. принципиальное отличие чугунов от стали заключается в том,что в их струтуре находится эвтектоидная смесь- ледебурит, а в стали – нет. Исключение: в некоторых сталях содержане С м.б. больше 2,14%, - это стали ледебуритного класса.

Чугуны так же делятся на 3 группы: 1)2,14-4,3% С – состоит из П+Л -(доэвтектические); 2)4,3% С – только Л (ледебурит) – (эвтектические) самые легкоплавкие; 3)больше 4,3 % С – содержит ЦII+Л – (заэвтектические чугуны).

 

– Конец работы –

Эта тема принадлежит разделу:

Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах

Газообразное жидкое и твердое состояния Термодинамическая функция энергетического состояния системы Все вещества могут находиться в трех... Кристаллизация металлов Изменение свободной энергии при кристаллизации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Роль дислокации в упрочнении металлов. Способы повышения прочности металлов и сплавов.
Велико влияние дислокаций на прочность кристаллов. Благодаря дислокациям экспер. Определ предел текучести Ме в 1000 раз больше теоретич значения. При значит увелич плотности дислок и уменьшении их

Понятие о наклепе, текстуре деформации и анизотропии механических свойств.
Упрочнение Ме при деформировании наз-ют наклепом. Наклеп Ме увел-ся до момента разрыва образца, хотя растягивающ. Нагрузка изменяется от Рmax до Рк. Это объясняется появлением местного утонения. В

Возврат, полигонизация, рекристаллизация металлов и сплавов.
Возврат явл-ся самой низкой температурной обработкой позволяющей воздействовать на структурные состояния деформированного металла. Различают две стадии возврата: ни

Понятие о гетерогенной структуре, твердом растворе и химическом соединении. Виды твердых растворов.
Система может быть гомогенной и состоять лишь из одной фазы, или гетерогенной, если состоит их 2 или нескольких фаз. Система может быть 1, 2-х и многокомпонентной (сталь = железо, углерод).

Правило фаз Гиббса и правило отрезков.
Состояние сплава зависит от внешних условий (температуры и давления) и характеризуется числом и концентрацией образовавшихся фаз. Закономерность изменения числа фаз в гетерогенных системах определя

Построение диаграмм состояния сплавов. Критические точки. Изотермы свободной энергии.
Строение сплава определяет его свойства, поэтому важно знать, как будет изменяться строение при изменении t и состава сплава. Зависимость между структурой сплава, его температурой, составом описыва

Диаграмма состояния сплава с неограниченной растворимостью компонентов в твердом состоянии. Дендритная ликвация.
Диаграммы состояния показывают изменения фазового состояния сплавов при изменении их состава и температуры, а также позволяют предсказывать свойства сплавов. Связь между составом сплава и его свойс

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой
Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвте

Диаграмма с перлитом.
Компоненты А,В, жидкост, a,b. В отличие от эвтектической реакции при перитектической реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.

Связь между типом диаграммы состояния и свойствами сплава.
Строение сплава определяет его св-ва,поэтому важно знать как будет изменяться строение при изменении температуры и состава сплава. Зависимость между структурой сплава,его составом и температурой оп

Упругая и пластическая деформация. Механизмы пластической деформации.
Под воздействием приложенных из вне нагрузок металлы могут деформироваться в упругой области (без остаточных явлений), а именно без изменения размеров и деформироваться пластически, когда изменяетс

Примеси в стали и влияние их на свойства стали.
В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1.Постоянные примеси: кремний, марганец, сера, фосфор.Марганец и кремний вводятся в процессе

Углеродистые стали.
Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталями. Помимо углерода в углеродистые стали при выплавке попадают посторонние примеси: обусловленные тезнологическими процессами

Способы производства стали.
Различают бессемеровский, кислородно-конверторный, мартеновский и способ выплавки в дуговых и индукционных печах. Бессемеровский способ в настоящее время практически не применяется в связи

Стали обыкновенного кач-ва.
Дешевые стали, в них допускается повышенное содержание вредных примесей, а также газонасыщенность и загрязненность неметаллическими включениями, т.к. они выплавляются по нормам массовой технологии.

Стали качественные и высококачественные
Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей (0,03 S и P). Они поставляются в виде проката. Поковок др. полуфабрикатов с гарантированным

Сверхпластичность металлов и сплавов.
Под сверхпластичностью понимают способность металла к незначительной пластической деформации (s=102-103%) в определенных условиях при одновременно малом сопротивлении деформированию (10° — 101 МПа)

Механические свойства металлов, определяемые при статических, динамических и циклических испытаниях.
Под механическими свойствами понимают характери­стики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обы

Превращения в стали при нагреве. Наследственно мелкозернистые и крупнозернистые стали.
Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%). Если доэвтекто

Рост зерна аустенита при нагреве.
В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением систем

Перегрев и пережег.
Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической об

Превращения в закаленной стали при нагреве после закалки. Отпуск стали. Обработка холодом.
  При нагреве до t=80гр.,при t ниже 80гр.превращения происходят медленно. Суть превращений при нагреве закаленной стали. При температуре 120-200град. начинается распад аустенита, закл

Технология термической обработки. Отжиг, нормализация и закалка.
Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требований, предъявляемых к полуфабрикатам (отливкам, поковкам, прокату и т.

Закаливаемость и прокаливаемость. Способы закалки. Охлаждающие среды. Дефекты закалки.
Под закаливаемостью понимают способность стали к повышению твердости Под прокаливанием понимают способность стали закаливаться на определенную глубину. Глубина закаленной зоны явл

Химико-термическая обработка. Цементация и азотирование.
Такая операция, которая сопровождается изменением состава, а вместе с тем и свойств поверхностного слоя обрабатываемого изделия. Поверхностная обработка обеспечивает хорошее сочетание твердости пов

Химико-термическая обработка. Нитроцементация и цианирование. Диффузионная металлизация.
ХТО - это вит обработки, при котор имеется состав и и св-ва поверхностных слоев Ме. Прим для деталей работающих на износ, когда нужно чтобы поверх-ть была прочной, а сердцевина оставалась вязкой. П

Термомеханическая обработка.
ТМО заключается в сочетании пластической деформации стали в аустенитном состоянии с закалкой. Формирование структуры закаленной стали при тмо происходит в условиях повышенной плотности и оптимально

Деформируемые аллюминиевые сплавы, неупрочняемые термической обработкой. Марки, состав, свойства, область применения.
К этим сплавам относятся сплавы алюминия с марганцем или с магнием: АМг и Амц. Цифы в маркировке – это номер сплава, а не химический состав. Эти сплавы имеют малую прочность но высокую пластичность

Литейные аллюминиевые сплавы. Марки, состав, свойства, область применения.
Должны обладать хорошей жидкотекучестью, малой усадкой, малой склонностью к образованию пористости и горячих трещин. Хорошими литеными свойствами обладают сплавы, по составу близкие к эвтектическим

Термическая обработка алюминиевых сплавов. Отжиг, закалка, старение.
Для упрочнения алюминиевых сплавов применяют закалку и старение, а для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, - отжиг. Закалка

Магний и его сплавы. Марки, состав, свойства, область применения. Особенности литья и термической обработки магниевых сплавов.
Магний – металл серебристо-белого цвета, не имеет полиморфных превращений и кристаллизуется в ГПУ решетку. Низкая плотность – 1,7 г/см3, tплав=651град. Хорошо обрабатывается резанием, воспринимает

Влияние легир. эл-тов.
Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, по

Обозначение марок легир. сталей. Их клас-ция.
1. по равновесной структуре: 1.1.доэвтектоид. стали (в структуре избыточн. Ф); 1.2.эвтектоидн. (П); 1.3.заэвтект. (избыточн. вторичн. легир. карбиды); 1.4.ледебуритные (первичн. карбиды вы

Особенности поведения металлов и сплавов при высоких температурах.
Жаропрочность – способность противостоять агрессивной среде при высоких температурах. Если среда действительно газовая, то проблема сводится к окалености. Газы в зависимости от температуры ведут ся

Конструкционные цементуемые и улучшаемые легир стали.
Цементуемые стали. Для изготовления деталей упрочняемых цементацией и нитроцементацией применяют низколегированные стали с содержанием 0,15-0,25 реже до 0,3% С. Содержание легирующих элемент

Интрументальнве стали и твердые сплавы.
Интрум стали – углеродистые и легированные стали, обладающие высокой твердостью 63-65 HRC, красностойкостью(теплостойкостью) – способностью не уменьшать свою твердость при повышении температуры. Об

Превращения в стали при нагреве. Наследственно мелкозернистые и крупнозернистые стали.
Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%). Если доэвтекто

Рост зерна аустенита при нагреве.
В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением систем

Перегрев и пережег.
Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической об

Хромистые и хромоникелевые нержавеющие стали. Их маркировка, структура и свойства. Особенности термической обработки этих сталей.
Хром должен быть растворен в стали. Если он образует карбиды, то сталь ржавеет. Для предотвращения в сталь добавляют Ti,Ta. В 20Х13, 40Х13, 95Х18 имеют мартенситную структуру. 12Х15 мартенситно-фер

Титан и его сплавы. Достоинства и недостатки, область применения. Структура титановых сплавов после охлаждения на воздухе.
Титан – металл серого цвета. Температура плавления 1668град. Технический титан изготовляют 2х марок ВТ1-00 (99,53%), ВТ1-0 (99,46%). На поверхности легко образуется оксидная пленка, повыша

Термическая обработка титановых сплавов.
В зависимости от состава и назначения можно подвергать отжигу, закалке, старению и химико-термической обработке. Чаще подвергают отжигу. Нагрев до 870-980град и далее выдержка при 530-660г

Медь и ее сплавы. Латуни, бронзы. Маркировка, состав, свойства, область применения.
Концентрация меди в земной коре 0,01%, в рудах в среднем 5%.Это металл красно-розового цвета без полиморфных превращений. Температура плавления 1083 град. Прочность 160 НПА. После прокатки и прессо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги