рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Понятие о наклепе, текстуре деформации и анизотропии механических свойств.

Понятие о наклепе, текстуре деформации и анизотропии механических свойств. - раздел Образование, Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах Упрочнение Ме При Деформировании Наз-Ют Наклепом. Наклеп Ме Увел-Ся До Момент...

Упрочнение Ме при деформировании наз-ют наклепом. Наклеп Ме увел-ся до момента разрыва образца, хотя растягивающ. Нагрузка изменяется от Рmax до Рк. Это объясняется появлением местного утонения. В образце участки в которых сосредотачив. пластич. деформация. При значительности деформации в Ме появляется кристаллографическая ориентация зерен, кот наз-ся текстура деформации. Текстура деформации – это результат одновременного деформирования зерен по нескольким системам скольжения. Она зависит от вида деформирования, кристалич стр-ры Ме, наличия примесей и условий деформирования. При прокатке получ-ся более сложная текстура. В этом случае параллельно плоскости прокатки лежит кристаллогафич пл-ть и направление которой образует с напрвлением прокатки опред угол a. Текстура деформации делает Ме анизотропным. Анизотропия – различие св-в кристаллов в различн направлениях. Все св-ва, кот зависят от сил в/д атомов спр-ся кристаллограф направл. Анизотропия резче выражена в кристаллах с несиметричной крист решеткой. В этом случае зависит от направления натл-ся для всех св-св. В рез-те ХПД и тех явл происх гуменен .

Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.

В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).

При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.

Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.

Изменение стр-ры при дорекристаллизационном отжиге.

Пластическая деф-ция приводит к переводу металлов в неравновесное состояние, т.е. с повышенным запасом свободной энергии. Как и любая другая сис-ма металл стремиться к уменьшению свободной энергии. Это уменьшение протекает тем интенсивнее, чем выше тем-ра. В зав-ти от тем-ры отжига различают процессы возврата и процессы рекристаллизации.

 

– Конец работы –

Эта тема принадлежит разделу:

Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах

Газообразное жидкое и твердое состояния Термодинамическая функция энергетического состояния системы Все вещества могут находиться в трех... Кристаллизация металлов Изменение свободной энергии при кристаллизации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Понятие о наклепе, текстуре деформации и анизотропии механических свойств.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Роль дислокации в упрочнении металлов. Способы повышения прочности металлов и сплавов.
Велико влияние дислокаций на прочность кристаллов. Благодаря дислокациям экспер. Определ предел текучести Ме в 1000 раз больше теоретич значения. При значит увелич плотности дислок и уменьшении их

Возврат, полигонизация, рекристаллизация металлов и сплавов.
Возврат явл-ся самой низкой температурной обработкой позволяющей воздействовать на структурные состояния деформированного металла. Различают две стадии возврата: ни

Понятие о гетерогенной структуре, твердом растворе и химическом соединении. Виды твердых растворов.
Система может быть гомогенной и состоять лишь из одной фазы, или гетерогенной, если состоит их 2 или нескольких фаз. Система может быть 1, 2-х и многокомпонентной (сталь = железо, углерод).

Правило фаз Гиббса и правило отрезков.
Состояние сплава зависит от внешних условий (температуры и давления) и характеризуется числом и концентрацией образовавшихся фаз. Закономерность изменения числа фаз в гетерогенных системах определя

Построение диаграмм состояния сплавов. Критические точки. Изотермы свободной энергии.
Строение сплава определяет его свойства, поэтому важно знать, как будет изменяться строение при изменении t и состава сплава. Зависимость между структурой сплава, его температурой, составом описыва

Диаграмма состояния сплава с неограниченной растворимостью компонентов в твердом состоянии. Дендритная ликвация.
Диаграммы состояния показывают изменения фазового состояния сплавов при изменении их состава и температуры, а также позволяют предсказывать свойства сплавов. Связь между составом сплава и его свойс

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой
Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвте

Диаграмма с перлитом.
Компоненты А,В, жидкост, a,b. В отличие от эвтектической реакции при перитектической реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.

Связь между типом диаграммы состояния и свойствами сплава.
Строение сплава определяет его св-ва,поэтому важно знать как будет изменяться строение при изменении температуры и состава сплава. Зависимость между структурой сплава,его составом и температурой оп

Упругая и пластическая деформация. Механизмы пластической деформации.
Под воздействием приложенных из вне нагрузок металлы могут деформироваться в упругой области (без остаточных явлений), а именно без изменения размеров и деформироваться пластически, когда изменяетс

Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла.
Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. Пригорячей деф. наклёп

Примеси в стали и влияние их на свойства стали.
В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1.Постоянные примеси: кремний, марганец, сера, фосфор.Марганец и кремний вводятся в процессе

Углеродистые стали.
Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталями. Помимо углерода в углеродистые стали при выплавке попадают посторонние примеси: обусловленные тезнологическими процессами

Способы производства стали.
Различают бессемеровский, кислородно-конверторный, мартеновский и способ выплавки в дуговых и индукционных печах. Бессемеровский способ в настоящее время практически не применяется в связи

Стали обыкновенного кач-ва.
Дешевые стали, в них допускается повышенное содержание вредных примесей, а также газонасыщенность и загрязненность неметаллическими включениями, т.к. они выплавляются по нормам массовой технологии.

Стали качественные и высококачественные
Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей (0,03 S и P). Они поставляются в виде проката. Поковок др. полуфабрикатов с гарантированным

Сверхпластичность металлов и сплавов.
Под сверхпластичностью понимают способность металла к незначительной пластической деформации (s=102-103%) в определенных условиях при одновременно малом сопротивлении деформированию (10° — 101 МПа)

Механические свойства металлов, определяемые при статических, динамических и циклических испытаниях.
Под механическими свойствами понимают характери­стики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обы

Превращения в стали при нагреве. Наследственно мелкозернистые и крупнозернистые стали.
Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%). Если доэвтекто

Рост зерна аустенита при нагреве.
В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением систем

Перегрев и пережег.
Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической об

Превращения в закаленной стали при нагреве после закалки. Отпуск стали. Обработка холодом.
  При нагреве до t=80гр.,при t ниже 80гр.превращения происходят медленно. Суть превращений при нагреве закаленной стали. При температуре 120-200град. начинается распад аустенита, закл

Технология термической обработки. Отжиг, нормализация и закалка.
Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требований, предъявляемых к полуфабрикатам (отливкам, поковкам, прокату и т.

Закаливаемость и прокаливаемость. Способы закалки. Охлаждающие среды. Дефекты закалки.
Под закаливаемостью понимают способность стали к повышению твердости Под прокаливанием понимают способность стали закаливаться на определенную глубину. Глубина закаленной зоны явл

Химико-термическая обработка. Цементация и азотирование.
Такая операция, которая сопровождается изменением состава, а вместе с тем и свойств поверхностного слоя обрабатываемого изделия. Поверхностная обработка обеспечивает хорошее сочетание твердости пов

Химико-термическая обработка. Нитроцементация и цианирование. Диффузионная металлизация.
ХТО - это вит обработки, при котор имеется состав и и св-ва поверхностных слоев Ме. Прим для деталей работающих на износ, когда нужно чтобы поверх-ть была прочной, а сердцевина оставалась вязкой. П

Термомеханическая обработка.
ТМО заключается в сочетании пластической деформации стали в аустенитном состоянии с закалкой. Формирование структуры закаленной стали при тмо происходит в условиях повышенной плотности и оптимально

Деформируемые аллюминиевые сплавы, неупрочняемые термической обработкой. Марки, состав, свойства, область применения.
К этим сплавам относятся сплавы алюминия с марганцем или с магнием: АМг и Амц. Цифы в маркировке – это номер сплава, а не химический состав. Эти сплавы имеют малую прочность но высокую пластичность

Литейные аллюминиевые сплавы. Марки, состав, свойства, область применения.
Должны обладать хорошей жидкотекучестью, малой усадкой, малой склонностью к образованию пористости и горячих трещин. Хорошими литеными свойствами обладают сплавы, по составу близкие к эвтектическим

Термическая обработка алюминиевых сплавов. Отжиг, закалка, старение.
Для упрочнения алюминиевых сплавов применяют закалку и старение, а для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, - отжиг. Закалка

Магний и его сплавы. Марки, состав, свойства, область применения. Особенности литья и термической обработки магниевых сплавов.
Магний – металл серебристо-белого цвета, не имеет полиморфных превращений и кристаллизуется в ГПУ решетку. Низкая плотность – 1,7 г/см3, tплав=651град. Хорошо обрабатывается резанием, воспринимает

Влияние легир. эл-тов.
Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, по

Обозначение марок легир. сталей. Их клас-ция.
1. по равновесной структуре: 1.1.доэвтектоид. стали (в структуре избыточн. Ф); 1.2.эвтектоидн. (П); 1.3.заэвтект. (избыточн. вторичн. легир. карбиды); 1.4.ледебуритные (первичн. карбиды вы

Особенности поведения металлов и сплавов при высоких температурах.
Жаропрочность – способность противостоять агрессивной среде при высоких температурах. Если среда действительно газовая, то проблема сводится к окалености. Газы в зависимости от температуры ведут ся

Конструкционные цементуемые и улучшаемые легир стали.
Цементуемые стали. Для изготовления деталей упрочняемых цементацией и нитроцементацией применяют низколегированные стали с содержанием 0,15-0,25 реже до 0,3% С. Содержание легирующих элемент

Интрументальнве стали и твердые сплавы.
Интрум стали – углеродистые и легированные стали, обладающие высокой твердостью 63-65 HRC, красностойкостью(теплостойкостью) – способностью не уменьшать свою твердость при повышении температуры. Об

Превращения в стали при нагреве. Наследственно мелкозернистые и крупнозернистые стали.
Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%). Если доэвтекто

Рост зерна аустенита при нагреве.
В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением систем

Перегрев и пережег.
Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической об

Хромистые и хромоникелевые нержавеющие стали. Их маркировка, структура и свойства. Особенности термической обработки этих сталей.
Хром должен быть растворен в стали. Если он образует карбиды, то сталь ржавеет. Для предотвращения в сталь добавляют Ti,Ta. В 20Х13, 40Х13, 95Х18 имеют мартенситную структуру. 12Х15 мартенситно-фер

Титан и его сплавы. Достоинства и недостатки, область применения. Структура титановых сплавов после охлаждения на воздухе.
Титан – металл серого цвета. Температура плавления 1668град. Технический титан изготовляют 2х марок ВТ1-00 (99,53%), ВТ1-0 (99,46%). На поверхности легко образуется оксидная пленка, повыша

Термическая обработка титановых сплавов.
В зависимости от состава и назначения можно подвергать отжигу, закалке, старению и химико-термической обработке. Чаще подвергают отжигу. Нагрев до 870-980град и далее выдержка при 530-660г

Медь и ее сплавы. Латуни, бронзы. Маркировка, состав, свойства, область применения.
Концентрация меди в земной коре 0,01%, в рудах в среднем 5%.Это металл красно-розового цвета без полиморфных превращений. Температура плавления 1083 град. Прочность 160 НПА. После прокатки и прессо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги