рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Стандартные размеры образцов

Стандартные размеры образцов - раздел Образование, Работа № 2. Измерение твердости металлов ……………………….….17 Наименование Образца Расчетная Длина L...

Наименование образца Расчетная длина l0,мм Диаметр образца d0, мм Площадь поперечного сечения F0,мм2 Кратность l0 d0
Нормальный длинный
Нормальный короткий
Пропорциональный длинный 11,3Ö F0 Произвольный Произвольный
Пропорциональный 5,65Ö F0 Произвольный Произвольный

 

При испытании на растяжение образец, установленный в захватах машины, деформируется при плавно возрастающей нагрузке и характеристики свойств металла определяют в условиях одноосного напряженного состояния.

Образцы из разных материалов разрушаются в результате испытаний различно.

В процессе испытаний на растяжение на разрывных машинах записывается диаграмма в координатах нагрузка (Р, Н) – удлинение

(∆l, мм) образца (диаграмма растяжения).

Такая диаграмма вычерчивается автоматическим устройством, при постепенном увеличении растягивающего усилия вплоть до разрыва испытываемого образца. Диаграммы растяжения будут иметь вид, показанный на рис. 15.

При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается.

Усилие, приходящееся на 1 мм2 поперечного сечения образца, называется напряжением и обозначается σ, МПа.

 

 

 

Рис 15. Типы диаграмм растяжения:

а – без площадки текучести; б – с площадкой текучести.

 

Напряжения, характеризующие сопротивление металла деформированию, подразделяются на условные и истинные.

Условные напряжения s определяются как отношение действующей нагрузки Р, Н к площади поперечного сечения до испытания F0 , мм2 (8):

. (8)

Истинные напряжения S, МПа, представляют собой отношение действующей нагрузки Р, Н, отрезок ОЕ к площади поперечного сечения в данный момент F, мм2 (9):

 

. (9)

Диаграмма растяжения образца из низкоуглеродистой стали представлена на рис. 16.

 

 

 

Рис. 16. Кривая растяжения низкоуглеродистой стали

 

Определение характеристик прочности.Максимальное напря- жение, до которого сохраняется прямолинейная зависимость между нагрузкой и деформацией, или, иначе говоря, остается справедливым закон Гука (10), называется пределом пропорциональности:

. (10)

Напряжение, при котором без заметного увеличения нагрузки образец продолжает деформироваться, называется физическим пределом текучести.Участок «вс» на диаграмме растяжения (рис.16) называется площадкой текучести. Наименьшая нагрузка на участке текучести Рт, Н, отнесенная к первоначальной площади поперечного сечения F0, мм2, определяет значение физического предела текучести (11):

 

 

(11)

 

Так как для ряда материалов на диаграмме растяжения нет площадки текучести (см. рис. 15, а) , то в этом случае определяется условный предел текучести s0,2 , мм.

Под условным пределом текучестиs0,2понимают напряжение, при котором остаточная деформация составляет 0,2% от первоначальной расчетной длины образца l0 . Условный предел текучести определяется по формуле

 

. (12)

 

Для определения условного предела текучести на диаграмме растяжения по оси абсцисс от начала координат откладывают величину, равную 0,2% от l0 (отрезок ОЕ на рис.17).

 

 

 

Рис.17. Схема определения условного предела текучести

 

Через точку Е проводят прямую, параллельную участку пропор- циональности диаграммы. Ордината точки А пересечения этой прямой с диаграммой растяжения определяет нагрузку, соответствующую условному пределу текучести.

Предел текучести является обязательной характеристикой металла по ГОСТу.

Точка В на диаграмме растяжения отвечает максимальной нагрузке, выдерживаемой образцом при испытании. В этой точке деформация из равномерной переходит в местную, и на образце начинает образовываться шейка.

Напряжение, отвечающее максимальной нагрузке РВ в процессе испытания, называется пределом прочности(13):

 

. (13)

Разрушение образца при растяжении происходит в точке К при нагрузке РК, Н. Отношение этой нагрузки к площади поперечного сечения образца после разрушения FК, мм2, представляет собой истинное сопротивление разрыву(14):

. (14)

Определение характеристик пластичности. Абсолютное оста- точное удлинение DlК, мм (15), определяется разностью между длиной образца после разрыва lК, мм, и его первоначальной длиной l0, мм:

. (15)

Относительное удлинение d, %(17),представляет собой отношение абсолютного удлинения к первоначальной длине образца

 

(16)

где d - относительное удлинение, %.

Для получения одинаковых значений относительного удлинения для одного и того же материала, испытываемого на различных образцах, необходимо чтобы образцы имели определенное соотношение между расчетной длиной l0,мм, и площадью поперечного сечения (или диаметром). Относительное удлинение, определенное на длинном образце (l0/d0=10), обозначается через d10 % , а на коротком образце – через d5, %.

Относительное сужениеj, % - характеристика пластичности, которая определяется как отношение абсолютного уменьшения площади поперечного сечения образца в месте разрыва к начальной площади сечения образца (17):

(17)

 

где F0 начальное поперечное сечение образца, FК площадь сечения образца в шейке после разрыва.

Относительное сужение характеризует способность к местной пластической деформации в направлении, перпендикулярном действию сил. Оно определяется только для образцов круглого сечения.

Изменение размеров образца в результате растяжения показано на

рис. 18.

 

Рис. 18. Образцы стали:

а - до растяжения; б - после разрыва

 

Характеристики материалов sВ, s0,2, d , j являются базовыми; они включаются в ГОСТ на постановку конструкционных материалов, в сертификаты, в паспорта приемочных испытаний, входят в расчеты прочности.

Определение ударной вязкости. В условиях эксплуатации конструкционные материалы испытывают более сложное нагружение, чем при статических испытаниях гладких образцов. В особенности это относится к металлам, которые под влиянием определенных условий службы склонны переходить в хрупкое состояние при действии низких температур, наличия концентраторов напряжений, увеличения абсолютных размеров, повышения скорости деформирования и других факторов.

Ударные испытания надрезанных образцов проводятся для оценки вязкости материалов и установления склонности его к переходу в хрупкое состояние.

Под вязкостью понимают способность материала поглощать работу внешних сил за счет пластической деформации.

Ударная вязкость равна работе, затраченной при динамическом разрушении надрезанного образца, отнесенной к площади поперечного сечения в месте надреза.

Ударную вязкость определяют на маятниковом копре, принципиальная схема которого приведена на рис. 19. Груз весом Q , первоначально поднятый на высоту Н, свободно падает и в нижнем положении разрушает установленный на опорах образец квадратного сечения. Часть кинетической энергии падающего груза расходуется на разрушение образца, а ее оставшаяся часть идет на поднятие груза на высоту h.

Груз весом Q первоначально поднят на высоту Н, свободно падает и в нижнем положении разрушает установленный на опорах образец квадратного сечения. Часть кинетической энергии падающего груза расходуется на разрушение образца, а ее оставшаяся часть идет на поднятие груза на высоту h.

 

 

 

Рис.19. Схема действия копра и эскиз образца

 

Энергия, затраченная на разрушение образца, подсчитывается по формуле (18):

 

(18)

Ударная вязкость определяется из выражения (19):

 

(19)

 

Выгодное отличие испытаний на ударную вязкость состоит в совмещении при испытаниях концентрации напряжений (надрез) и ударной изгибающей нагрузки, позволяющем создать большую неравномерность поля напряжений.

Для определения ударной вязкости применяют надрезанные посередине длины образцы различных типов (рис. 20).

Испытания проводят в соответствии с ГОСТ 9454-78 на образцах с концентраторами напряжений трех видов:

U с радиусом R=1мм;

V c радиусом R=0,25мм;

Т – усталостная трещина.

В зависимости от формы надреза ударная вязкость обозначается KCU, KCV или KCT.

Поскольку наиболее распространены испытания на удар образцов с

U-образным надрезом, в справочниках чаще всего проводится обозначение ударной вязкости KCU, МДж/м2.

 

 

 

Рис. 20. Образцы для испытаний на удар:

а – U-образный надрез; б – V-образный надрез; в – образец с трещиной

 

Определение предела выносливости. Многие детали машин и механизмов в процессе эксплуатации подвергаются повторно-переменным (циклическим) напряжениям, что может вызвать образование трещин и разрушение даже при напряжениях ниже s0,2.

Разрушение металлов и сплавов в результате многократного повторно-переменного напряжения носит название усталости, а свойство металлов сопротивляться усталости называется выносливостью(ГОСТ 23207-78).

Природа усталостного разрушения заключается в следующем. Металлы, как известно, состоят из большого числа различно ориентированных зерен, которые вследствие анизотропии оказывают неодинаковое сопротивление действию внешних сил. Зерна, неблагоприятно расположенные по отношению к направлению действия внешних сил, оказываются слабыми, и пластичная деформация в них произойдет при напряжениях ниже предела текучести, в других же зернах приложенная нагрузка вызовет лишь упругую деформацию.

Многократная пластическая деформация при действии повторно-переменных нагрузок приводит к образованию микротрещины, которая, увеличиваясь, превращается в зону усталостного разрушения.

Исследования на усталость проводят для определения предела выносливости, под которым понимают максимальное напряжение цикла, которое выдерживает материал, не разрушаясь при достаточно большом числе повторно-переменных нагружений (циклов).

Предел выносливости при симметричном цикле обозначается s-1.Предел выносливости чаще определяют на вращающемся образце (гладком или с надрезом) с приложением изгибающей нагрузки по симметричному циклу.

Для этого используют не менее десяти образцов, каждый из которых испытывается до разрушения только на одном уровне напряжений.

По результатам испытаний отдельных образцов в координатах «напряжение-число циклов» строят кривую, по которой и определяют предел выносливости s-1(рис. 21).

Для тех металлов и сплавов, у которых нет горизонтального участка выносливости, испытания, ограничивают определением «ограниченного предела выносливости», который для сталей равен 10 млн., а для цветных сплавов 100 млн. циклов.

 

s-1

 

Рис. 21.Схема испытания и кривая выносливости

– Конец работы –

Эта тема принадлежит разделу:

Работа № 2. Измерение твердости металлов ……………………….….17

Работа Макроскопический метод исследования металлов и... сплавов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Стандартные размеры образцов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Макроскопический метод исследования металлов и сплавов
Цель работы: ознакомление с методикой проведения макроструктурного анализа, получение практических навыков изготовления макрошлифов, изучения поверхностей деталей, изломов, макрошлифов, выяв

Реактивы для травления
  Реактив Концентрация раствора Условия травления Область применения реактива составляющая к

Измерение твердости металлов
Цель работы: изучить устройство приборов для определения твердости металлов, научиться пользоваться приборами по измерению твердости металлов. Приборы и оборудование: пресс Б

Соотношение диаметров шарика и нагрузки при испытании металлов по методу Бринелля
Материал Число твердости Толщина образца, мм Диаметр шарика, мм Нагрузка, кгс Выдержка под нагрузкой, сек

Твердость по Бринеллю
  Диаметр отпечатка, мм d10, или 2d5, или 4d2,5 Число твердости при нагрузке Р, кгс

Практика определения твердости по Бринеллю
  1. Пользуясь табл. 2 для заданного образца определить диаметр шарика, величину нагрузки Р и время выдержки образца под нагрузкой. 2. Закрепить шарик в держателе 15 (

Пределы измерения твердости
Обозначение шкалы Число единиц в шкале Обозначение твердости по шкале Полная нагрузка Р=Р0+Р1 при

Практика определения твердости по Роквеллу
1. Пользуясь табл. 4 для заданного образца выбрать нужную шкалу твердости и установить соответственно сменный груз 11 (рис. 13). 2. Установить в шпиндель 8 выбранный наконечник и закрепить

Различными методами
По Роквеллу По Бри нелю НВ По Роквеллу По Бри нелю НВ По Роквеллу По Бри нелю НВ

Механические испытания металлов
Цель работы: ознакомиться с испытательным оборудованием для определения основных механических характеристик; провести механические испытания предложенных марок сталей; по результатам испы

Рекристаллизации на структуру и свойства стали
  Цель работы: изучить влияние холодной пластической деформации на структуру и свойства (твердость) малоуглеродистой стали; изучить влияние температуры нагрева на структуру и с

Порядок выполнения работы
  В данной работе студенты знакомятся с изменением формы, размеров зерен и твердости металла, подвергнутого холодной пластической деформации и рекристаллизационному отжигу. П

Сплавов
Цель работы: изучить диаграмму состояния железо-цементит, проанализировать строение и фазовые превращения, происходящие в сплавах Fe-Fe3C.   Компоне

Порядок выполнения работы
1. В соответствии с табл. 7 по номеру варианта выбираются исходные данные для индивидуального задания. 2. Вычертить в масштабе диаграмму Fe-Fe3C с указанием темпера- тур фазовых

Пояснения к выполнению работы
1. Для построения кривой охлаждения используют вертикальный разрез в соответствии с заданным химическим составом сплава. Типовые примеры кривых охлаждения с указанными структурами представлены на р

Изучение структуры и свойств углеродистых сталей в равновесном состоянии
Цель работы:изучение микроструктуры углеродистых сталей в равновесном состоянии, определение марки сталей, установление связи между структурой стали, диаграммой состояния Fe-Fe3C

Порядок выполнения работы
  1. Начертить область диаграммы состояния системы Fe-Fe3C, соот- ветствующую сталям. 2. На диаграмме состояния Fe-Fe3C провести вертикальные линии, соо

Изучение структуры и свойств чугунов
  Цель работы: изучение микроструктуры чугунов разных марок, установление зависимости между структурой и механическими свойствами чугунов. Приборы и оборудование:

Механические свойства чугунов
Марка чугуна σв σ0,2 δ, % НВ Структура металлической основы

Термическая обработка углеродистых сталей
  Цель работы:обоснование выбора параметров и практическое проведение основных видов термической обработки сталей: отжига, нормализации, закалки и отпуска; овл

Влияние скорости охлаждения на структуру и свойства стали.
Этот вопрос удобнее выяснить на примере эвтектоидной стали (С = 0,8%). Из этой стали изготавливается серия образцов, все они нагреты до аустенитного состояния, т.е. выше 727°С и в дальнейшем каждый

Порядок выполнения работы
Работа выполняется бригадным методом. Каждый студент бригады получает задание на проведение одного из видов термической обработки. Пользуясь диаграммой состояния Fe-Fe3C и справочной лит

Сталей в зависимости от скорости охлаждения
Вид термообра- ботки Температу-ра нагрева, °С Vохл., °С   lg Vохл. Твердость HRC→

Результаты измерения твердости и определения микроструктуры сталей в зависимости от температуры отпуска
Вид термообработки Температура нагрева, °С Твердость HRC→HB Микроструктура Низкий отпуск

Инструментальные стали
Цель работы: изучение структуры, свойств, способов термической обработки инструментальных сталей и области их применения. Приборы и оборудование: набор микрошлифов в лаборато

Состав и твердость твердых сплавов
  Сплав   WC   TiC   ТаС   Со Твердость HRA, не менее  

Медные и антифрикционные сплавы
Цель работы: изучение структуры, свойств, маркировки медных и антифрикционных сплавов и области их применения. Приборы и оборудование: коллекция изделий из медных и антифрикц

Химический состав и механические свойства
деформируемых латуней после отжига (ГОСТ 15527-70) Марка латуни Содержание, мас. % σв, МПа σ

Механические свойства и область применения
литейных латуней (ГОСТ 17711-93) Марка латуни σв, МПа δ, % HB Область применения

Химический состав и механические свойства оловянных бронз
Марка бронзы Содержание, мас. % прочих элементов σв, МПа σ0,2, МПа δ, %

Химический состав и назначение алюминиевых бронз
Марка бронзы Al Легирующие элементы Назначение БрА5 . 4-6 - Ленты, полосы

Химический состав и назначение баббитов
  Марка сплава Sb Cu Cd Sn Другие элементы Назначение Б83

Библиографический список
  1. Материаловедение: учебник для ВУЗов/ Б.Н. Арзамасов, В.И.Макарова, Г.К. Мухин и др., под общ. ред. Б.Н. Арзамасова – 3-е изд., перераб. и доп. – М.: Изд-во МГТУ им. Н.Э. Баумана,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги