рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными механическими колебаниями.

Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными механическими колебаниями. - раздел Образование, Уфа 2008 Решение Уравнения (11.51) Равно Сумме Общего Решения Однородного Уравнения (1...

Решение уравнения (11.51) равно сумме общего решения однородного уравнения (11.47) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме. Заменим правую часть уравнения (11.51) на комплексную величину :

(11.52)

Частное решение этого уравнения будем искать в виде

Найдем производные для : . Подставляя выражение для и его производных в уравнение (11.52), получим

(11.53)

Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что . Тогда (11.53) имеет вид Найдем отсюда величину x0 : Оно имеет вид

Это комплексное число удобно представить в экспоненциальной форме: где

(11.54)

и (11.55)

Следовательно, решение уравнения (11.53) в комплексной форме примет вид:

Его вещественная часть равна

, (11.56)

где и задаются соответственно формулами (11.54) и (11.55).

Таким образом, частное решение неоднородного уравнения (11.52) имеет вид

(11.57)

Решение уравнения (11.52) равно сумме общего решения однородного уравнения

(11.58)

и частного решения (11.57). Слагаемое (11.58) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (11.54). Следовательно, в установившемся режиме вынужденные колебания происходят с частотой и являются гармоническими; амплитуда и фаза колебаний, определяемые выражениями (11.54) и (11.55), также зависят от .

8. Амплитуда и фаза вынужденных колебаний. Резонанс

 

Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты .

Из формулы (11.54) следует, что амплитуда А смещения имеет максимум. Чтобы определить резонансную частоту– частоту, при которой амплитуда А смещения достигает максимума, – нужно найти максимум функции (11.54), или, что то же самое, минимум подкоренного выражения. Продифференцировав подкоренное выражение по и приравняв нулю, получим условие, определяющее : .

Это равенство выполняется при и , у которых только лишь положительное значение имеет физический смысл. Следовательно, резонансная частота

(11.59)

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте называется механическим резонансом.При значение практически совпадает с собственной частотой колебательной системы. Подставляя (11.59) в формулу (11.54), получим

(11.60)

На рис. 11.7 приведена зависимость амплитуды вынужденных колебаний от частоты при различных значениях .

    Рис.11.7

 

Из (11.59) и (11.60) вытекает, что чем меньше , тем выше и правее лежит максимум данной кривой. Если , то все кривые приходят к одному и тому же, отличному от нуля, предельному значению , так называемому статическому отклонению.Если , то все кривые асимптотически стремятся к нулю. Приведенная совокупность кривых называется резонансными кривыми.

Из формулы (11.60) вытекает, что при малом затухании () резонансная амплитуда смещения , где Q – добротность колебательной системы, – статическое отклонение. Отсюда следует, что добротность Q характеризует резонансные свойства колебательной системы: чем больше Q, тем больше . На рис. 11.8 представлены резонансные кривые для амплитуды скорости. Амплитуда скорости максимальна при и равна , т.е. чем больше коэффициент затухания, тем ниже максимум резонансной кривой.

Из выражения следует, что если затухание в системе отсутствует, то только в этом случае колебания и вынуждающая сила имеют одинаковые фазы.

 

    Рис.11.8

 

Зависимость от при разных коэффициентах представлена на рис.11.9. Отсюда следует, что при изменении изменяется и сдвиг фаз . Из формулы (11.55) вытекает, что при , а при независимо от значения коэффициента затухания , т.е. сила опережает по фазе колебания на р/2. При дальнейшем увеличении щ сдвиг фаз возрастает и при , т.е. фаза колебаний почти противоположна фазе внешней силы. Семейство кривых, изображенных на рис. 11.9, называется фазовыми резонансными кривыми.

Явления резонанса могут быть как вредными, так и полезными. Например, при конструировании машин и различного рода сооружений необходимо, чтобы собственная частота колебаний их не совпадала с частотой возможных внешних воздействий, в противном случае возникнут вибрации, которые могут вызвать серьезные разрушения. С другой стороны, наличие резонанса позволяет обнаружить даже очень слабые колебания, если их частота совпадает с частотой собственных колебаний прибора. Так, радиотехника, прикладная акустика, электротехника, используют явление резонанса.

 

  Рис.11.9

 

 

9. Автоколебания

 

Огромный интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания– незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени (в такт с ее колебаниями).

Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опускающегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струей. Автоколебательными системами являются также двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т.д.


10. Распространение колебаний в однородной упругой среде

Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью х. Процесс распространения колебаний в пространстве называется волной.

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных направлению распространения волны. Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т.е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т.е. фактически только в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.

На рис. 11.10 показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстояние, равное (1/4) vT, т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный Т, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени Т, пройдя путь vT, достигнет частицы 5.

На рис. 11.11 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц (места сгущения частиц обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью х.

 

    Рис.11.11

На рис. 11.10 и 11.11 показаны колебания частиц, положения равновесия которых лежат на оси х. В действительности колеблются не только частицы, расположенные вдоль оси х, а совокупность частиц, заключенных в некотором объеме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются неподвижными, а волновой фронт все время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.

Рассмотрим случай, когда плоская волна распространяется вдоль оси х. Тогда все точки среды, положения равновесия которых имеют одинаковую координату х (но различные значения координат y и z), колеблются в одинаковой фазе.

    Рис.11.12

 

На рис.11.12 изображена кривая, которая дает смещение x из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функции x(х, t) для некоторого фиксированного момента времени 1. С течением времени график перемещается вдоль оси х. Такой график можно строить как для продольной, так и для поперечной волны. В обоих случаях он выглядит одинаково.

Расстояние л, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что

λ =vT (11.61)

где v скорость волны, T период колебаний. Длину волны можно определить также, как расстояние между ближайшими точками среды, колеблющимися с разностью фазы, равной 2p (см. рис. 11.12).

Заменив в соотношении (11.61) T на 1/f (f – частота колебаний), получим

λf = v(11.62)

К этой же формуле можно прийти другим способом: за одну секунду источник волн совершает v колебаний, порождая в среде при каждом колебании один «гребень» и одну «впадину» волны. К тому моменту, когда источник будет завершать v-e колебание, первый «гребень» успеет пройти путь v. Следовательно, f «гребней» и «впадин» волны должны уложиться на длине v.

11. Уравнение плоской и сферической бегущей волны.
Фазовая скорость. Волновое уравнение

 

Бегущими волнаминазываются волны, которые переносят в пространстве энергию. Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат и времени t:

(11.63)

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, y, z. Периодичность по времени вытекает из того, что x описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние л, колеблются одинаковым образом.

Найдем вид функции x в плоской волне, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось х совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными оси х и, поскольку все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t: x= x(х, t). Пусть колебания точек, лежащих в плоскости х = 0 (рис. 11.13), имеют вид .

 

  Рис.11 13

 

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х = 0 этой плоскости, волне требуется время t = x/х (х – скорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на t от колебаний частиц в плоскости х = 0, т.е. будут иметь вид .

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:

] (11.64)

Величина А представляет собой амплитуду волны.

Из (11.64) следует, что является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (11.64) есть уравнение бегущей волны.Если плоская волна распространяется в противоположном направлении, то .

В общем случае уравнение плоской волны,распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

, (11.65)

где A= const – амплитуда волны, – циклическая частота волны, – начальная фаза колебаний,определяемая в общем случае выбором начал отсчета х и t, фаза плоской волны.

Для характеристики волн используется волновое число

(11.66)

Учитывая его, уравнению (11.65) можно придать вид

(11.67)

Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (11.67) только знаком члена kx.

Предположим, что при волновом процессе фаза постоянна, т.е.

(11.68)

Продифференцировав последнее выражение и сократив на , получим , откуда

. (11.69)

Следовательно, скорость v распространения волны в уравнении (11.65) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью.

При выводе формулы (11.67) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается – наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: , где амплитуда в точках плоскости х = 0. Соответственно, уравнение плоской волны имеет следующий вид:

(11.70)

Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна wt. Тогда точки, лежащие на волновой поверхности радиуса r, будут колебаться с фазойw (t – r/х) = wt – kr (чтобы пройти путь r, волне требуется время ф = r/х). Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, не остается постоянной – она убывает с расстоянием от источника по закону 1/r. Следовательно, уравнение сферической волны имеет вид

, (11.71)

где А – постоянная величина, численно равная амплитуде на расстоянии от источника, равном единице. Размерность А равна размерности колеблющейся величины, умноженной на размерность длины. Для поглощающей среды в формулу (11.71) нужно добавить множительe–гr.

Напомним, что в силу сделанных предположений уравнение (11.71) справедливо только при r, значительно превышающих размеры источника. При стремлении r к нулю выражение для амплитуды обращается в бесконечность. Этот абсурдный результат объясняется неприменимостью уравнения для малых r.

Из выражения (11.66) вытекает, что фазовая скорость

(11.72)

Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн,а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением– дифференциальным уравнением в частных производных

, (11.73)

где v – фазовая скорость, оператор Лапласа.

Решением уравнения (11.73) является уравнение любой волны, в частности, плоской (см. (11.65)) и сферической (см. (11.71)) волн. Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид.

 


12. Принцип суперпозиции. Групповая скорость

 

Если среда, в которой распространяется одновременно несколько волн, линейна, т.е. ее свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции (наложения) волн:при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Исходя из принципа суперпозиции и разложения Фурье, любая волна может быть представлена в виде суммы гармонических волн, т.е. в виде волнового пакета или группы волн. Волновым пакетомназывается суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

«Сконструируем» простейший волновой пакет из двух распространяющихся вдоль положительного направления оси х гармонических волн с одинаковыми амплитудами, близкими частотами и волновыми числами, причем . Тогда

В этой формуле есть амплитуда. Поэтому образовавшаяся волна отличается от гармонической тем, что ее амплитуда есть медленно изменяющаяся функция координаты х и времени t.

За скорость распространения этой негармонической волны (волнового пакета) принимают скорость перемещения максимума амплитуды волны, рассматривая тем самым максимум в качестве центра волнового пакета. При условии, что , получим

(11.74)

Скорость и есть групповая скорость.Ее можно определить как скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет. Хотя выражение (11.74) получено для волнового пакета из двух составляющих, можно доказать, что оно справедливо в самом общем случае. Рассмотрим связь между групповой и фазовой скоростями. Получим

(11.75)

Из формулы (11.75) вытекает, что и может быть как меньше, так и больше v в зависимости от знака .

В недиспергирующей среде и групповая скорость совпадает с фазовой.

Понятие групповой скорости очень важно, так как именно она фигурирует при измерении дальности в радиолокации, в системах управления космическими объектами и т.д. В теории относительности доказывается, что групповая скорость , в то время как для фазовой скорости ограничений не существует.

13. Энергия упругой волны

 

Пусть в некоторой среде распространяется в направлении оси х плоская продольная волна x = a cos ( wtkx).

Выделим в среде элементарный объем ДV, настолько малый, что скорость движения и деформацию во всех точках этого объема можно было считать одинаковыми и равными, соответственно, и .

Обозначим плотность среды через , а скорость движения – через . Тогда масса выделенного объема равна . Выделенный нами объем обладает кинетической энергией

(11.76)

Относительное удлинение цилиндра есть . Модуль Юнга среды – Е. Тогда рассматриваемый объем обладает также потенциальной энергией упругой деформации

(11.77)

Так как скорость распространения продольных волн , заменим в (11.77) модуль Юнга через сх2. Тогда выражение для потенциальной энергии объема ДV примет вид

(11.78)

Выражения (11.76) и (11.78) в сумме дают полную энергию

(11.79)

Разделив эту энергию на объем ДV, в котором она содержится, получим плотность энергии

(11.80)

Дифференцируем выражение для один раз по t, другой раз по x . Получим , .

 

Подставив эти выражения в формулу (11.80) и приняв во внимание, что k2х2 = щ2, получим

(11.81)

В поперечной волне плотность энергии получает такое же выражение.

Из (11.81) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квадрата синуса. Среднее значение квадрата синуса равно 1/2. Соответственно, среднее по времени значение плотности энергии в каждой точке среды равно

(11.82)

Плотность энергии и ее среднее значение пропорциональны плотности среды с, квадрату частоты щ и квадрату амплитуды волны А. Подобная зависимость имеет место не только для незатухающей плоскости волны, но и для других видов волн (плоской затухающей, сферической и т.д.).

Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии. Эта энергия доставляется от источника колебаний в различные точки среды самой волной; следовательно, волна переносит с собой энергию. Количество энергии, переносимое волной через некоторую поверхность в единицу времени, называется потоком энергии через эту поверхность. Если через данную поверхность переносится за время dt энергия dЕ, то поток энергии Ф равен

(11.83)

Поток энергии – скалярная величина, размерность которой равна размерности энергии, деленной на размерность времени, т.е. совпадает с размерностью мощности. В соответствии с этим Ф измеряется в ваттах, эрг/с и т. п.

Поток энергии в разных точках среды может быть различной интенсивности. Для характеристики течения энергии в разных точках пространства вводится векторная величина, называемая плотностью потока энергии. Эта величина численно равна потоку энергии через единичную площадку, помещенную в данной точке перпендикулярно направлению, в котором переносится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.

Пусть через площадку , перпендикулярную направлению распространения волны, переносится за время ∆t энергия ∆Е. Тогда плотность потока энергии равна

(11.84)

Через площадку (рис. 6.1) за время ∆t будет перенесена энергия ∆Е, заключенная в объеме цилиндра с основанием и высотой vt (v – фазовая скорость волны). Если размеры цилиндра достаточно малы (за счет малости и ∆t) для того, чтобы плотность энергии во всех точках цилиндра можно было считать одинаковой, то ∆Е можно найти как произведение плотности энергии w на объем цилиндра, равный : .

Подставив это выражение в формулу (11.84), получим выражение для плотности потока энергии:

(11.85)

Наконец, введя вектор v, модуль которого равен фазовой скорости волны, а направление совпадает с направлением распространения волны (и переноса энергии), можно написать, что

j = wv(11.86)

 
 

  Рис. 11.14

 

Мы получили выражение для вектора плотности потока энергии (интенсивности волны). Этот вектор был впервые введен на рассмотрение выдающимся русским физиком Н.А.Умовым и называется вектором Умова. Вектор (6.10), как и плотность энергии w, различен в разных точках пространства, а в данной точке изменяется со временем по закону квадрата синуса. Его среднее значение равно .

Данное выражение, так же как и (11.82), справедливо для волны любого вида (сферической, затухающей и т.д.).

 

14. Интерференция волн

 

Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности. Волныназываются когерентными, если они имеют постоянную разность фаз. На рис.11.15 показана картина интерференции, наблюдаемая в случае, когда в воду бросают два камня.

Рис.11.15

 

Рассмотрим интерференцию двух волн одинаковой амплитуды, исходящих из когерентных источников и и встречающихся в точке Р (рис.11.16).

 

    Рис.11.16

 

Согласно уравнению волны, смещения, вызванные в точке Р первой и второй волнами, равны соответственно и .

Тогда результат сложения определится разностью фаз .

Если , то в точке Р будет максимум: колебания максимально усилят друг друга и результирующая амплитуда будет равна 2А.

Если же, то в точке Р будет минимум: колебания взаимно погасятся и результирующая амплитуда будет равна нулю.

Условия максимума и минимума можно записать еще и так:

(11.87)

(11.88)

 

Разность называется разностью хода волн или разностью хода лучей.

Следовательно, в точке Р будет максимум, если разность хода волн составляет четное число полуволн; если разность хода волн составляет нечетное число полуволн, то в точке Р будет минимум.

Так как волны распространяются по всем направлениям, то в пространстве наблюдаем чередование областей усиления и уменьшения колебаний. Это явление и представляет собой интерференционную картину.

15. Стоячие волны

 

Особым случаем интерференции являются стоячие волны– это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами. Для вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую фазу, а отсчет времени начнем с момента, когда фазы обеих волн равны нулю. Тогда уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, соответственно будут иметь вид

(11.89)

Сложив эти уравнения, получим уравнение стоячей волны:

(11.90)

Из уравнения стоячей волны (11.90) вытекает, что в каждой точке этой волны происходят колебания той же частоты с амплитудой , зависящей от координаты х рассматриваемой точки.

В точках среды, где

(11.91)

амплитуда колебаний достигает максимального значения, равного 2 А. В точках среды, где

(11.92)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна, называются пучностями стоячей волны,а точки, в которых амплитуда колебаний равна нулю, называются узлами стоячей волны.Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (11.91) и (11.92) можно получить соответственно координаты пучностей и узлов:

(11.93)

(11.94)

Можно показать, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны . Расстояние между соседними пучностью и узлом стоячей волны равно .

В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе (в уравнении (11.89) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами (в уравнении (11.90) стоячей волны аргумент косинуса не зависит от х). При переходе через узел множитель меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на , т.е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае получается узел. Будет ли на границе отражения узел или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения получается пучность (рис. 11.17, а), если более плотная – узел (рис. 11.17, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противоположных направлений, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у границы колебания складываются с одинаковыми фазами – получается пучность.

Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превращения кинетической энергии в потенциальную и обратно.

 

  Рис.11.17

 


16. Характеристика звуковых волн

 

Звуковыми(или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16-20000Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с < 16 Гц (инфразвуковые)и>>20 кГц (ультразвуковые)органами слуха человека не воспринимаются.

Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия (растяжения). В твердых телах звуковые волны могут быть как продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям сжатия (растяжения) и сдвига.

Интенсивностью звука(или силой звука)называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны: I=W/(St).

Единица интенсивности звука в СИ – ватт на метр в квадрате(Вт/м2).

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшая (порог слышимости)и наибольшая (порог болевого ощущения)интенсивность звука, которая способна вызвать звуковое восприятие. На рис. 11.18 представлена зависимость порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости.

Рис.11.18

 

Если интенсивность звука является величиной, объективно характеризующей волновой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука,зависящая от частоты. По физиологическому закону Вебера-Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности: , где – интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10 12 Вт/м2. Величина L называется уровнем интенсивности звука и выражается в белах(в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими,– децибелами(дБ).

Физиологической характеристикой звука является уровень громкости,который выражается в фонах(фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует ≈90 фон, а шепот на расстоянии 1 м – ≈ 20 фон.

Реальный звук является наложением гармонических колебаний с большим набором частот, т.е. звук обладает акустическим спектром,который может быть сплошным(в некотором интервале присутствуют колебания всех частот) и линейчатым(присутствуют отделенные друг от друга определенные частоты).

Помимо громкости звуковое ощущение характеризуется еще высотой и тембром. Высота звука– качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты увеличивается и высота звука, т.е. звук становится «выше». Характер акустического спектра и распределения энергии между определенными частотами определяет своеобразие звукового ощущения, называемое тембром звука.Так, различные певцы, берущие одну и ту же ноту, имеют различный акустический спектр, т.е. они имеют различный тембр.

Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой (например, в струнных инструментах источником звука является струна, соединенная с корпусом инструмента).

Совершая колебания, тело вызывает колебания прилегающих к нему частиц среды с такой же частотой. Состояние колебательного движения последовательно передается к все более удаленным от тела частицам среды, т.е. в среде распространяется волна с частотой колебаний, равной частоте ее источника, и с определенной скоростью, зависящей от плотности и упругих свойств среды.

Скорость звука в газе не зависит от давления р газа, но возрастает с повышением температуры. Чем больше молярная масса газа, тем меньше в нем скорость звука. Например, при Т = 273 К скорость звука в воздухе

(М = 29∙10 -3 кг/моль) 331 м/с, в водороде (М – 2∙10 -3 кг/моль) v = 1260 м/с.

При распространении звука в атмосфере необходимо учитывать целый ряд факторов: скорость и направление ветра, влажность воздуха, молекулярную структуру газовой среды, явление преломления и отражения звука на границе двух сред. Кроме того, любая реальная среда обладает вязкостью, поэтому наблюдается затухание звука, т.е. уменьшение его амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание звука обусловлено в значительной мере его поглощением в среде, связанным с необратимым переходом звуковой энергии в другие формы энергии (в основном в тепловую).

Для акустики помещений большое значение имеет реверберация звука– процесс постепенного затухания звука в закрытых помещениях после выключения его источника. Если помещения пустые, то происходит медленное затухание звука и создается «гулкость» помещения. Если звуки затухают быстро (при применении звукопоглощающих материалов), то они воспринимаются приглушенными. Время реверберации– это время, в течение которого интенсивность звука в помещении ослабляется в миллион раз, а его уровень – на 60 дБ. Помещение обладает хорошей акустикой, если время реверберации составляет 0,5–1,5с.

17. Эффект Доплера в акустике

Эффектом Доплера(австрийский физик, математик и астроном (1803–1853)) называется изменение частоты колебаний, воспринимаемой приёмником при движении источника этих колебаний и приёмника относительно друг друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т.е. движение источника колебаний (гудка) относительно приемника (уха) изменяет частоту принимаемых колебаний.

Для рассмотрения эффекта Доплера предположим, что источник и приемник звука движутся вдоль соединяющей их прямой; и – соответственно скорости движения источника и приемника, причем они положительны, если источник (приемник) приближается к приемнику (источнику), и отрицательны, если удаляется. Частота колебаний источника равна .

1. Источник и приемник покоятся относительно среды,т.е. . Если v – скорость распространения звуковой волны в рассматриваемой среде, то длина волны . Распространяясь в среде, волна достигнет приемника и вызовет колебания его звукочувствительного элемента с частотой .

Следовательно, частота звука, которую зарегистрирует приемник, равна частоте , с которой звуковая волна излучается источником.

2. Приемник приближается к источнику, а источник покоится,т.е. ,. В данном случае скорость распространения волны относительно приемника станет равной . Так как длина волны при этом не меняется, то, т.е. частота колебаний, воспринимаемых приемником, враз больше частоты колебаний источника.

3. Источник приближается к приемнику, а приемник покоится,т.е. ,. Скорость распространения колебаний зависит лишь от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние vT (равное длине волны ) независимо от того, движется ли источник или покоится. За это же время источник пройдет в направлении волны расстояние , т.е. длина волны в направлении движения сократится и станет равной . Тогда т.е. частота v колебаний, воспринимаемых приемником, увеличится в раз. В случаях 2 и 3, если , знак будет обратным.

4. Источник и приемник движутся относительно друг друга.Используя результаты, полученные для случаев 2 и 3, можно записать выражение для частоты колебаний, воспринимаемых источником:

(11.95)

причем верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак – в случае их взаимного удаления.

Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или приемник. Если направления скоростей и не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (11.95) надо брать их проекции на направление этой прямой.

 

18. Ультразвук и eго применение

 

По своей природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука. Однако ультразвук, обладая высокими частотами (>20кГц) и, следовательно, малыми длинами волн, характеризуется особыми свойствами, что позволяет выделить его в отдельный класс явлений. Из-за малых длин ультразвуковые волны, как и свет, могут быть получены в виде строго направленных пучков.

Ультразвуки широко используются в технике, например, для направленной подводной сигнализации, обнаружения подводных предметов и определения глубин (гидролокатор, эхолот). Так, в эхолоте от пьезокварцевого генератора, укрепленного на судне, посылаются направленные ультразвуковые сигналы, которые, достигнув дна, отражаются от него и возвращаются обратно. Зная скорость их распространения в воде и определяя время прохождения (от подачи до возвращения) ультразвукового сигнала, можно вычислить глубину. Прием эха также производится с помощью пьезокварца. Звуковые колебания, дойдя до пьезокварца, вызывают в нем упругие колебания, в результате чего на противоположных поверхностях кварца возникают электрические заряды, которые измеряются.

Если пропускать ультразвуковой сигнал через исследуемую деталь, то можно обнаружить в ней дефекты по характерному рассеянию пучка и по появлению ультразвуковой тени. На этом принципе создана целая отрасль техники – ультразвуковая дефектоскопия,начало которой положено С.Я.Соколовым (1897–1957). Применение ультразвука легло также в основу новой области акустики – акустоэлектроники,позволяющей на ее основе разрабатывать приборы для обработки сигнальной информации в микрорадиоэлектронике.

Ультразвук применяют для воздействия на различные процессы (кристаллизацию, диффузию, тепло- и массообмен в металлургии и т.д.) и биологические объекты (повышение интенсивности процессов обмена и т.д.), для изучения физических свойств веществ (поглощения, структуры вещества и т.д.). Ультразвук используется также для механической обработки очень твердых и очень хрупких тел, в медицине (диагностика, ультразвуковая хирургия, микромассаж тканей) и т.д.

 

Контрольные вопросы

 

1. Что такое колебания? свободные колебания? гармонические колебания? периодические процессы?

2. Дайте определения амплитуды, фазы, периода, частоты, циклической частоты колебания.

3. Какова связь амплитуды и фазы смещения, скорости и ускорения при прямолинейных гармонических колебаниях?

4. Выведите формулы для скорости и ускорения гармонически колеблющейся точки как функции времени.

5. Выведите и прокомментируйте формулы для кинетической, потенциальной и полной энергии при гармонических колебаниях.

6. Чему равно отношение полной энергии гармонического колебания к максимальному значению возвращающей силы, вызывающей это колебание?

7. Как можно сравнить между собой массы тела, измеряя частоты колебаний при подвешивании этих масс к пружине?

8. Что называется гармоническим осциллятором, пружинным, физическим и математическим маятником?

9. Выведите формулы для периодов колебаний пружинного, физического и математического маятников.

10. Что такое приведенная длина физического маятника?

11. 11.Какие процессы происходят при свободных гармонических колебаниях в колебательном контуре? Чем определяется их период?

12. Запишите и проанализируйте дифференциальное уравнение свободных гармонических колебаний в контуре.

13. Что такое биения? Чему равна частота биений? период?

14. Какова траектория точки, участвующей одновременно в двух взаимно перпендикулярных гармонических колебаниях с одинаковыми периодами? Когда получается окружность? прямая?

15. Как по виду фигур Лиссажу можно определить отношение частот складываемых колебаний?

16. Запишите дифференциальное уравнение затухающих колебаний и его решение.

17. Как изменяется частота собственных колебаний с увеличением массы колеблющегося тела?

18. По какому закону изменяется амплитуда затухающих колебаний? Являются ли затухающие колебания периодическими?

19. Почему частота затухающих колебаний должна быть меньше частоты собственных колебаний системы?

20. Что такое коэффициент затухания, декремент затухания, логарифмический декремент затухания? В чем заключается физический смысл этих величин?

21. При каких условиях наблюдается апериодическое движение?

22. Что такое автоколебания? В чем их отличие от вынужденных и свободных незатухающих колебаний? Где они применяются?

23. Что такое вынужденные колебания? Запишите дифференциальное уравнение вынужденных колебаний и решите его.

24. От чего зависит амплитуда вынужденных колебаний? Запишите выражение для амплитуды и фазы при резонансе.

25. Нарисуйте, проанализируйте резонансные кривые для амплитуды смещения и скорости. В чем их отличие?

26. Почему добротность является важнейшей характеристикой резонансных свойств системы?

27. Чему равен сдвиг фаз между смещением и вынуждающей силой при резонансе?

28. Что называется резонансом? Какова его роль?

29. Что называется длиной волны? Какова связь между длиной волны, скоростью и периодом?

30. Какая волна является бегущей, гармонической, плоской, сферической? Каковы их уравнения?

31. Что такое волновое число? фазовая и групповая скорости?

32. В чем заключается физический смысл вектора Умова?

33. При каких условиях возникает интерференция волн? Назовите условия интерференционных максимума и минимума.

34. Две волны с одинаковым периодом распространяются в одном направлении. Разность хода равна четному числу полуволн. Что получится в результате интерференции?

35. Две волны, распространяющиеся навстречу друг другу, отличаются только амплитудами. Образуют ли они стоячую волну?

36. Чем стоячая волна отличается от бегущей?

37. Чему равно расстояние между двумя соседними узлами стоячей волны? двумя соседними пучностями? соседними пучностью и узлом?

38. Что такое звуковые волны? Звуковые волны в воздухе продольные или поперечные? Почему?

39. Может ли звук распространяться в вакууме?

40. От чего зависят громкость, высота и тембр звука?

41. Что такое эффект Доплера? Чему будет равна частота колебаний, воспринимаемых покоящимся приемником, если источник колебаний от него удаляется?

42. Какое влияние оказывает скорость ветра на эффект Доплера?

43. Как определить частоту звука, воспринимаемую приемником, если источник звука и приемник движутся?

– Конец работы –

Эта тема принадлежит разделу:

Уфа 2008

РОССИЙСКОЙ ФЕДЕРАЦИИ... ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными механическими колебаниями.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Уфа 2008
УДК 531(075.3) ББК 22.2я73 Ф 27   Печатается по решению редакционно-издательского совета Башкирского государственного п

Цели и задачи изучения дисциплины
Основными целями курса “Механика” следует считать: – формирование современной естественнонаучной картины мира; – понимание роли этого раздела физики в построении физической

Требования к уровню подготовки
Студент, изучавший курс “Механика”, должен овладеть следующими знаниями, умениями и навыками: – иметь представление о теориях фундаментальных механических явлений как о целостной системе з

Распределение учебных часов
  Виды занятий Всего часов Общая трудоемкость Аудиторные занятия

Учебно-тематический план
  № Название раздела ЛК (час) Лабораторный практикум Практические занятия Натурный экспе

Вычислительный эксперимент
1. Движение по окружности. 2. Вес и невесомость. 3. Движение по наклонной плоскости. 4. Реактивное движение. 5. Законы Кеплера. 6. Течение идеальной жид

Потенциальная энергия упруго деформированного стержня равна
, (8.14) где – объем стержня.

Механика
  Редактор Н.Р. Ахтямова   Технический редактор И.В. Пономарев     Лиц. на издат. деят. Б848421 от 03.11.2000 г. Подписано

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги