рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение механических свойств материалов

Определение механических свойств материалов - раздел Образование, Игнатьев Д.А МАТЕРИАЛОВЕДЕНИЕ. ТЕОРИЯ. ЗАДАНИЯ. ПРИМЕРЫ   Для Определения Механических Свойств Материалов Используют Ст...

 

Для определения механических свойств материалов используют структурные и физические методы исследования металлов.

Материалы обладают разнообразными свойствами. Используя один метод их исследования, невозможно получить информацию о всех свойствах. Используют несколько методов анализа:

1. Определение химического состава.

Используются методы количественного анализа.

1.1. Если не требуется большой точности, то используют спектральный анализ.

Спектральный анализ основан на разложении и исследовании спектра электрической дуги или искры, искусственно возбуждаемой между медным электродом и исследуемым металлом.

Зажигается дуга, луч света через призмы попадает в окуляр для анализа спектра. Цвет и концентрация линий спектра позволяют определить содержание химических элементов.

Используются стационарные и переносные стилоскопы.

1.2. Более точные сведения о составе дает рентгеноспектральный анализ.

Проводится на микроанализаторах. Позволяет определить состав фаз сплава, характеристики диффузионной подвижности атомов.

2. Изучение структуры.

Различают макроструктуру, микроструктуру и тонкую структуру.

2.1. Макроструктурный анализ – изучение строения металлов и сплавов невооруженным глазом или, при небольшом увеличении, с помощью лупы.

Осуществляется после предварительной подготовки исследуемой поверхности (шлифование и травление специальными реактивами).

Позволяет выявить и определить дефекты, возникшие на различных этапах производства литых, кованных, штампованных и катанных заготовок, а также причины разрушения деталей.

Устанавливают: вид излома (вязкий, хрупкий); величину, форму и расположение зерен и дендритов литого металла; дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины); химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой; волокна в деформированном металле.

2.2. Микроструктурный анализ – изучение поверхности при помощи световых микроскопов. Увеличение – 50…2000 раз. Позволяет обнаружить элементы структуры размером до 0,2 мкм.

Образцы – микрошлифы с блестящей полированной поверхностью, так как структура рассматривается в отраженном свете. Наблюдаются микротрещины и неметаллические включения.

Для выявления микроструктуры поверхность травят реактивами, зависящими от состава сплава. Различные фазы протравливаются неодинаково и окрашиваются по-разному. Можно выявить форму, размеры и ориентировку зерен, отдельные фазы и структурные составляющие.

Кроме световых микроскопов используют электронные микроскопы с большой разрешающей способностью.

Изображение формируется при помощи потока быстро летящих электронов. Электронные лучи с длиной волны (0,04…0,12)·10-8 см дают возможность различать детали объекта, по своим размерам соответствующие межатомным расстояниям.

Просвечивающие микроскопы. Поток электронов проходит через изучаемый объект. Изображение является результатом неодинакового рассеяния электронов на объекте. Различают косвенные и прямые методы исследования.

При косвенном методе изучают не сам объект, а его отпечаток – кварцевый или угольный слепок (реплику), отображающий рельеф микрошлифа, для предупреждения вторичного излучения, искажающего картину.

При прямом методе изучают на просвет тонкие металлические фольги, толщиной до 300 нм. Фольги получают непосредственно из изучаемого металла.

Растровые микроскопы. Изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже, чем у просвечивающих микроскопов.

2.3. Для изучения атомно-кристаллического строения твердых тел (тонкое строение) используются рентгенографические методы, позволяющие устанавливать связь между химическим составом, структурой и свойствами тела, тип твердых растворов, микронапряжения, концентрацию дефектов, плотность дислокаций.

3.Физические методы исследования.

3.1.Термический анализ основан на явлении теплового эффекта. Фазовые превращения в сплавах сопровождаются тепловым эффектом, в результате на кривых охлаждения сплавов при температурах фазовых превращений наблюдаются точки перегиба или температурные остановки. Данный метод позволяет определить критические точки.

3.2. Дилатометрический метод. При нагреве металлов и сплавов происходит изменение объема и линейных размеров – тепловое расширение. Если изменения обусловлены только увеличением энергии колебаний атомов, то при охлаждении размеры восстанавливаются. При фазовых превращениях изменения размеров необратимы.

Метод позволяет определить критические точки сплавов, температурные интервалы существования фаз, а также изучать процессы распада твердых растворов.

3.3. Магнитный анализ. Он используется для исследования процессов, связанных с переходом из паромагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов.

 

Деформацией называется изменение формы и размеров тела под действием напряжений.

Напряжение – сила, действующая на единицу площади сечения детали.

Напряжения и вызываемые ими деформации могут возникать при действии на тело внешних сил растяжения, сжатия и т.д., а также в результате фазовых (структурных) превращений, усадки и других физико-химических процессов, протекающих в металлах, и связанных с изменением объема.

Металл, находящийся в напряженном состоянии, при любом виде нагружения всегда испытывает напряжения нормальные и касательные (рис.1.).

 

– Конец работы –

Эта тема принадлежит разделу:

Игнатьев Д.А МАТЕРИАЛОВЕДЕНИЕ. ТЕОРИЯ. ЗАДАНИЯ. ПРИМЕРЫ

Арзамасский политехнический институт филиал... Государственного образовательного учреждения высшего профессионального... Нижегородский государственный технический университет им Р Е Алексеева...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение механических свойств материалов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Игнатьев Д.А.
И 266 Материаловедение. Теория. Задания. Примеры: Учеб. пособие/ Д.А. Игнатьев; Арзамасский политехнический институт (филиал) ГОУ ВПО «Нижегородский государственный технический уни

А – скольжением; б – двойникованием
  Двойникование может возникать не только в результате действия внешних сил, но и в результате отжига пластически деформированного тела. Это характерно для металлов с гранецентрирован

Выбор материала изделия
  Классификация и маркировка материалов Классификация сталей Стали классифицируются по множеству признаков. 1. По химическому составу: углеродистые и легиро

Термическая, химико-термическя и термо-механическая обработка
Виды термической обработки металлов   Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства явля

Определение микроструктуры и фазового состава сплавов различных систем
Особенности строения механических смесей, твердых растворов, химических соединений Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, состав

Б – эвтектический белый чугун (Л); в – заэвтектический белый чугун (Л+ЦI).
  По количеству углерода и по структуре белые чугуны подразделяются на: доэвтектические (2,14%<C<4,3%), структура перлит + ледебурит + цементит вторичный (П+Л+ЦII

КОНТРОЛЬНАЯ РАБОТА ПО МАТЕРИАЛОВЕДЕНИЮ
  Выполнил: студент группы АЗМ 2004-3 Иванов И.И. (фамилия, имя, отчество) Проверил: Игнатьев Д.А.

Технические характеристики
    Ленточка сверла представляет собой узкую полоску на его цилиндрической поверхности, расположенную вдоль винтовой канавки и предназначенную для направления сверла при

Условия эксплуатации
  Наиболее распространенным методом получения отверстий в сплошном материале является сверление. Движение резания при сверлении - вращательное, движение подачи - поступательное. Перед

Обоснование выбора материала изделия, расшифровка обозначения материала зделия
Спиральные сверла изготавливают из быстрорежущей стали Р9, Р18 и стали 9ХС. Хвостовик спирального сверла может быть цилиндрическим и коническим. Цилиндрический хвостовик (у сверл диаметром до 10 мм

Описание эксплуатационных и технологических свойств материала изделия
Чугунные, латунные и бронзовые заготовки можно сверлить без охлаждения. Применение СОЖ позволяет повысить скорость резания в 1,4…1,5 раза. В качестве СОЖ используются раствор эмульсии (для конструк

Описание химико-термической обработки изделия
Под термической обработкой (далее Т.О.) понимают изменение структу­ры, а, следовательно, и свойств стали при нагреве до определенной температуры, выдержке при этой температуре и последующем охлажде

Анализ структурных и фазовых превращений протекающих при химико-термической обработки изделия
Микроструктура быстрорежущей стали в литом состоянии имеет эвтектическую структурную составляющую. Для получения оптимальных свойств инструментов из быстрорежущей стали необходимо по возможности ус

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги