рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Термическая, химико-термическя и термо-механическая обработка

Термическая, химико-термическя и термо-механическая обработка - раздел Образование, Игнатьев Д.А МАТЕРИАЛОВЕДЕНИЕ. ТЕОРИЯ. ЗАДАНИЯ. ПРИМЕРЫ Виды Термической Обработки Металлов   Свойст...

Виды термической обработки металлов

 

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 20).

 

Рис. 20. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

 

Различают следующие виды термической обработки:

1. Отжиг 1 рода – возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.

Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение.

Разновидностями отжига первого рода являются:

· диффузионный;

· рекристаллизационный;

· отжиг для снятия напряжения после ковки, сварки, литья.

2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).

Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).

4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.

Характеризуется нагревом до температуры ниже критической А1 (рис. 12.1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.

Термическую обработку подразделяют на предварительную и окончательную.

Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).

Окончательная – формирует свойство готового изделия.

Превращения, протекающие в структуре стали при нагреве и охлаждении.

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии (рис 21).

 

Рис. 21. Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (FA), мартенсита (FM), перлита (FП)

 

1. Превращение перлита в аустенит (ПА) происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.

.

2. Превращение аустенита в перлит (АП) происходит при охлаждении ниже А1, минимальной свободной энергией обладает перлит:

.

3. Превращение аустенита в мартенсит (АМ) происходит при быстром охлаждении ниже температуры нестабильного равновесия

.

4. Превращение мартенсита в перлит (МП) – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.

.

 

Механизм основных превращений

 

1. Превращение перлита в аустетит

 

Превращение основано на диффузии углерода, сопровождается полиморфным превращением , а так же растворением цементита в аустените.

Для исследования процессов строят диаграммы изотермического образования аустенита (рис.12.3). Для этого образцы нагревают до температуры выше А1 и выдерживают, фиксируя начало и конец превращения.

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит – цементит, кристаллическая решетка перестраивается в решетку .

Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста.

Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. Затем в аустените начинает растворяться вторая фаза перлита – цементит, следовательно, концентрация углерода увеличивается. Превращение в идет быстрее. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.

Величина образовавшегося зерна аустенита оказывает влияние на свойства стали.

Рост зерна аустенита. Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры А1, то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая.

Склонность к росту аустенитного зерна является плавочной характеристикой. Стали одной марки, но разных плавок, могут различаться, так как содержат неодинаковое количество неметаллических включений, которые затрудняют рост аустенитного зерна.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Игнатьев Д.А МАТЕРИАЛОВЕДЕНИЕ. ТЕОРИЯ. ЗАДАНИЯ. ПРИМЕРЫ

Арзамасский политехнический институт филиал... Государственного образовательного учреждения высшего профессионального... Нижегородский государственный технический университет им Р Е Алексеева...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Термическая, химико-термическя и термо-механическая обработка

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Игнатьев Д.А.
И 266 Материаловедение. Теория. Задания. Примеры: Учеб. пособие/ Д.А. Игнатьев; Арзамасский политехнический институт (филиал) ГОУ ВПО «Нижегородский государственный технический уни

Определение механических свойств материалов
  Для определения механических свойств материалов используют структурные и физические методы исследования металлов. Материалы обладают разнообразными свойствами. Используя од

А – скольжением; б – двойникованием
  Двойникование может возникать не только в результате действия внешних сил, но и в результате отжига пластически деформированного тела. Это характерно для металлов с гранецентрирован

Выбор материала изделия
  Классификация и маркировка материалов Классификация сталей Стали классифицируются по множеству признаков. 1. По химическому составу: углеродистые и легиро

Определение микроструктуры и фазового состава сплавов различных систем
Особенности строения механических смесей, твердых растворов, химических соединений Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, состав

Б – эвтектический белый чугун (Л); в – заэвтектический белый чугун (Л+ЦI).
  По количеству углерода и по структуре белые чугуны подразделяются на: доэвтектические (2,14%<C<4,3%), структура перлит + ледебурит + цементит вторичный (П+Л+ЦII

КОНТРОЛЬНАЯ РАБОТА ПО МАТЕРИАЛОВЕДЕНИЮ
  Выполнил: студент группы АЗМ 2004-3 Иванов И.И. (фамилия, имя, отчество) Проверил: Игнатьев Д.А.

Технические характеристики
    Ленточка сверла представляет собой узкую полоску на его цилиндрической поверхности, расположенную вдоль винтовой канавки и предназначенную для направления сверла при

Условия эксплуатации
  Наиболее распространенным методом получения отверстий в сплошном материале является сверление. Движение резания при сверлении - вращательное, движение подачи - поступательное. Перед

Обоснование выбора материала изделия, расшифровка обозначения материала зделия
Спиральные сверла изготавливают из быстрорежущей стали Р9, Р18 и стали 9ХС. Хвостовик спирального сверла может быть цилиндрическим и коническим. Цилиндрический хвостовик (у сверл диаметром до 10 мм

Описание эксплуатационных и технологических свойств материала изделия
Чугунные, латунные и бронзовые заготовки можно сверлить без охлаждения. Применение СОЖ позволяет повысить скорость резания в 1,4…1,5 раза. В качестве СОЖ используются раствор эмульсии (для конструк

Описание химико-термической обработки изделия
Под термической обработкой (далее Т.О.) понимают изменение структу­ры, а, следовательно, и свойств стали при нагреве до определенной температуры, выдержке при этой температуре и последующем охлажде

Анализ структурных и фазовых превращений протекающих при химико-термической обработки изделия
Микроструктура быстрорежущей стали в литом состоянии имеет эвтектическую структурную составляющую. Для получения оптимальных свойств инструментов из быстрорежущей стали необходимо по возможности ус

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги