рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Базовые средства управления процессами в ОС Unix

Базовые средства управления процессами в ОС Unix - раздел Образование, ОПЕРАЦИОННЫЕ СИСТЕМЫ Рассмотрим[R12] Теперь, Что Происходит При Обращении К Системному Вызову F...

Рассмотрим[R12] теперь, что происходит при обращении к системному вызову fork(). При обращении процесса к данному системному вызову операционная система создает копию текущего процесса, т.е. появляется еще один процесс, тело которого полностью идентично исходному процессу. Это означает, что система заносит в таблицу процессов новую запись, тем самым новый процесс получает уникальный идентификатор, а также в системе создается контекст для дочернего процесса.

Новый процесс наследует почти все атрибуты исходного родительского процесса, за исключением идентификационной информации (т.е. у дочернего процесса, в частности, свой идентификатор PID и иной идентификатор родительского процесса). Среди прочего дочерний процесс наследует открытые отцовским процессом файлы. На это свойство в ОС Unix опираются многие механизмы. Хотя необходимо отметить, что наследуются необязательно все открытые файлы: если некоторый файл открывался в специальном режиме, то при формировании дочернего процесса этот файл для него будет автоматически закрыт.

#include <sys/types.h>

#include <unistd.h>

 

pid_t fork(void);

Соответственно, при успешном завершении сыновнему процессу возвращается значение 0, а родительскому процессу — идентификатор порожденного процесса; в случае ошибки возвращается -1, а в переменной errno будет храниться код ошибки. Поскольку дочерний процесс является копией отцовского процесса, то возникает проблема, как отличить, какой из процессов в данный момент обрабатывается. Анализируя результат, возвращаемый системным вызовом fork(), можно определить, что текущий процесс является предком или потомком.

Рассмотрим пример (Рис. 76). Пускай в системе обрабатывается процесс с идентификатором 2757. В некоторый момент времени этот процесс обращается к системному вызову fork(), в результате чего в системе появляется новый процесс, который, предположим, имеет идентификатор 2760. Сразу оговоримся, что дочерний процесс может получить совершенно произвольный идентификатор, отличный от нуля и единицы (обычно система выделяет новому процессу первую свободную запись в таблице процессов). По выходу из системного вызова fork() процесс 2757 продолжит свое выполнение с первой команды из then-блока, а дочерний процесс 2760 — с первой команды из else-блока. Далее эти процессы ведут себя независимо с точки зрения системного управления процессами: в частности, порядок их обработки на процессоре в общем случае пользователю неизвестен и зависит от той или иной реализованной в системе стратегии планирования времени процессора.

Рис. 76. Пример использования системного вызова fork().

Рассмотрим еще один пример. В данном случае используются дополнительно два системных вызова: getpid() для получения идентификатора текущего процесса и getppid() для получения идентификатора родительского процесса. Итак, данный процесс при запуске печатает на экране идентификаторы себя и своего отца, затем производит обращение к системному вызову fork(), после чего и данный процесс, и его потомок снова печатают идентификаторы. Соответственно, на экране в случае успешной обработки всех системных вызовов будут напечатаны три строки.

int main(int argc, char **argv)

{

/* печать PID текущего процесса и PID процесса-предка */

printf("PID=%d; PPID=%d n", getpid(), getppid());

/* создание нового процесса */

fork();

/* с этого момента два процесса функционируют параллельно и

независимо*/

/* оба процесса печатают PID текущего процесса и PID

процесса-предка */

printf("PID=%d; PPID=%d n", getpid(), getppid());

}

Редко бывает, когда в процессе происходит обращение лишь к системному вызову fork(). Обычно к нему происходит обращение в связке с одним из семейства системных вызовов exec(). Последние обеспечивают смену тела текущего процесса. В это семейство входят вызовы, у которых в названии префиксная часть обычно представлена как exec, а суффиксная часть служит для уточнения сигнатуры того или иного системного вызова. В качестве иллюстрации приведем определение системного вызова execl().

#include <unistd.h>

 

int execl(const char *path, char *arg0, ..., char *argn, 0);

Параметр path указывает на имя исполняемого файла. Параметры arg0, …, argn являются аргументами программы, передаваемые ей при вызове (это те параметры, которые будут содержаться в массиве argv при входе в программу). При неудачном завершении возвращается -1, а в переменной errno устанавливается код ошибки.

Итак, концептуально все системные вызовы семейства exec() работают следующим образом. Через параметры вызова передается указание на имя некоторого исполняемого файла, а также набор аргументов, которые передаются внутрь при запуске этого исполняемого файла. При выполнении данных системных вызовов происходит замена тела текущего процесса на тело, образованное в результате загрузки исполняемого файла, и управление передается на точку входа в новое тело.

Рассмотрим небольшой пример (Рис. 77). Запускается процесс (ему ставится в соответствие идентификатор 2757), который обращается к системному вызову execl(), для смены своего тела телом команды ls -l, которая отображает содержимое текущего каталога. Реализация данной команды хранится, соответственно, в файле /bin/ls. После успешного завершения системного вызова execl() процесс (с тем же идентификатором 2757) будет содержать реализацию команды ls, и управление в нем будет передано на точку входа (т.е. запустится функция main()).

При обращении к системным вызовам семейства exec() сохраняются основные атрибуты текущего процесса (в частности, идентификатор процесса, идентификатор родительского процесса, приоритет и др.), а также сохраняются все открытые в текущем процессе файлы (за исключением, быть может, файлов, открытых в специальном режиме). С другой стороны, изменяются режимы обработки сигналов, эффективные идентификаторы владельца и группы и прочая системная информация, которая должна корректироваться при смене тела процесса.

Рис. 77. Пример использования системного вызова execl().

Приведем ряд примеров для иллюстрации применения различных вызовов семейства exec().

Пример. Если обращение к системному вызову будет неуспешным, то функция printf() отобразит на экране соответствующий текст.

#include <unistd.h>

 

int main(int argc, char **argv)

{

...

/*тело программы*/

...

execl(“/bin/ls”, ”ls”, ”-l”, (char*)0);

/* или execlp(“ls”, ”ls”, ”-l”, (char*)0); */

printf(“это напечатается в случае неудачного обращения к предыдущей функции, к примеру, если не был найден файл ls n”);

...

}

Пример. Вызов C-компилятора. В данном случае второй параметр — вектор из указателей на параметры строки, которые будут переданы в вызываемую программу. Как и ранее, первый указатель — имя программы, последний — нулевой указатель. Эти вызовы удобны, когда заранее неизвестно число аргументов вызываемой программы.

int main(int argc, char **argv)

{

char *pv[]={“cc”, “-o”, “ter”, “ter.c”, (char*)0};

...

/*тело программы*/

...

execv (“/bin/cc”, pv);

...

}

Итак, мы рассмотрели по отдельности системные вызовы fork() и exec(), но в ОС Unix обычно применяется связка вызовов fork-exec.

Для иллюстрации сказанного рассмотрим еще один пример. В данном случае родительский процесс (PID = 2757) порождает своего потомка посредством обращения к системному вызову fork(), после чего в отцовском процессе управление переходит на else-блок. В то же время в дочернем процессе (PID = 2760) управление передается на первую инструкцию then-блока, где происходит обращение к системному вызову execl(). После чего тело дочернего процесса меняется на тело команды ls.

Рис. 78. Пример использования схемы fork-exec.

Рассмотрим еще один пример. Программа порождает три процесса, каждый из которых запускает программу echo посредством системного вызова exec(). Данный пример демонстрирует важность проверки успешного завершения системного вызова exec(), в противном случае возможно исполнение нескольких копий исходной программы. В нашем случае, если все вызовы exec() проработают неуспешно, то копий программ будет восемь. Если все вызовы exec() будут успешными, то после последнего вызова fork() будет существовать четыре копии процесса. В каком порядке они пойдут на выполнение предсказать трудно.

int main(int argc, char **argv)

{

if(fork() == 0)

{

execl(“/bin/echo”,”echo”,”это”,”сообщение один”,NULL);

printf(“ошибка”);

}

if(fork() == 0)

{

execl(“/bin/echo”,”echo”,”это”,”сообщение два”,NULL);

printf(“ошибка”);

}

if(fork() == 0)

{

execl(“/bin/echo”,”echo”,”это”,”сообщение три”,NULL);

printf(“ошибка”);

}

printf(“процесс-предок закончился”);

}

Результат работы может быть следующим:

процесс-предок закончился

это сообщение три

это сообщение один

это сообщение два

Теперь рассмотрим системные вызовы, которые сопутствуют базовым системным вызовам управления процессами в ОС Unix. Прежде всего, речь пойдет о завершении процесса. Вообще говоря, процесс может завершиться по одной из двух причин. Первая причина связана с возникновением в процессе сигнала. Сигнал можно считать программным аналогом прерывания, и речь о них пойдет ниже при обсуждении вопросов взаимодействия процессов. Сигнал может быть связан с тем, что в процессе произошло деление на ноль, или сигнал может прийти от другого процесса с указанием незамедлительного завершения. Вторая причина связана с обращением к системному вызову завершения процесса. При этом обращение может быть явным, когда в теле программы встречается обращение к системному вызову _exit(), или неявным, если происходит выполнение оператора return языка C внутри функции main(). В последнем случае компилятор заменит действие оператора return обращением к системному вызову _exit().

#include <unistd.h>

 

void _exit(int status);

Системный вызов exit() не возвращает никакого значения, поскольку он всегда прорабатывает. А через его единственный параметр status возвращается т.н. программный код завершения. Это значение передается операционной системе как код завершения программы. В принципе значение этой переменной может быть произвольным, но в системе есть договоренность, что возврат нулевого значения сигнализирует об успешном завершении процесса, остальные значения трактуются как ошибочное завершение (в частности, процесс может возвращать некий код ошибки).

Рассмотрим, что происходит с процессом и в системе при обращении к системному вызову exit(). Очевидно, что сиюминутно процесс не может завершиться, поэтому процесс переходит в переходное состояние — т.н. состояние зомби. При этом выполняется целая совокупность действий в системе, связанных с завершением процесса. Во-первых, корректно освобождаются ресурсы (закрываются файлы, освобождаются оперативная память и пр.). Во-вторых, поскольку ОС Unix является «семейственной» системой (у каждого процесса может быть целая иерархия потомков), стоит проблема, какой процесс считать отцовским после завершения данного родительского процесса, и в ОС Unix принято решение, что все сыновние процессы усыновляются процессом с номером 1. И, наконец, процессу-предку от данного завершаемого процесса передается сигнал SIGCHLD, но в большинстве случаев его игнорируют.

Симметричную картину иллюстрирует системный вызов wait(), который обеспечивает в процессе получение информации о факте завершения одного из его потомков.

#include <sys/types.h>

#include <sys/wait.h>

 

pid_t wait(int *status);

Обычно при обращении к системному вызову wait() возможны следующие варианты. Во-первых, если до обращения к этому системному вызову какие-то сыновние процессы уже завершились, то процесс получит информацию об одном из этих процессов. Если же у процесса нет дочерних процессов, то, обращаясь к системному вызову wait(), процесс сразу получит соответствующий код ответа. В-третьих, если у процесса имеются дочерние процессы, но ни один из них не завершился, то при обращении к указанному системному вызову данный отцовский процесс будет блокирован до завершения одного из своих сыновних процессов.

По факту завершения одного из процессов родительский процесс при обращении к системному вызову wait() получает следующую информацию. В случае успешного завершения возвращается идентификатор PID завершившегося процесса, или же -1 — в случае ошибки или прерывания. А через параметр status передается указатель на целочисленную переменную, в которой система возвращает процессу причины завершения сыновнего процесса. Данный параметр содержит в старшем байте код завершения процесса-потомка (пользовательский код завершения процесса), передаваемый в качестве параметра системному вызову exit(), а в младшем байте — индикатор причины завершения процесса-потомка, устанавливаемый ядром ОС Unix (системный код завершения процесса). Системный код завершения хранит номер сигнала, приход которого в сыновний процесс вызвал его завершение.

Необходимо сделать замечание, касающееся системного вызова wait(). Данный системный вызов не всегда отрабатывает на завершении дочернего процесса. В случае если отцовский процесс производит трассировку сыновнего процесса, то посредством системного вызова wait() можно фиксировать факт приостановки сыновнего процесса, причем сыновний процесс после этого может быть продолжен (т.е. не всегда он должен завершиться, чтобы отцовский процесс получил информацию о сыне). С другой стороны, имеется возможность изменить режим работы системного вызова wait() таким образом, чтобы отцовский процесс не блокировался в ожидании завершения одного из потомков, а сразу получал соответствующий код ответа.

И, наконец, отметим, что после передачи информации родительскому процессу о статусе завершения все структуры, связанные с процессом-зомби, освобождаются, и удаляется запись о нем из таблицы процессов.

Рассмотрим пример использования системного вызова wait(). В данном случае приводится текст программы, которая последовательно запускает программы, имена которых указаны при вызове.

#include<stdio.h>

 

int main(int argc, char **argv)

{

int i;

for (i=1; i<argc; i++)

{

int status;

if(fork() > 0)

{

/* процесс-предок ожидает сообщения

от процесса-потомка о завершении */

wait(&status);

printf(“process-fathern”);

continue;

}

execlp(argv[i], argv[i], 0);

exit();

}

}

Пусть существуют три исполняемых файла print1, print2, print3, каждый из которых только печатает текст first, second, third соответственно, а код вышеприведенного примера находится в исполняемом файле с именем file. Тогда результатом работы команды

file print1 print2 print3

будет:

first

process-father

second

process-father

third

process-father

Рассмотрим еще один пример. В данном примере процесс-предок порождает два процесса, каждый из которых запускает команду echo. Далее процесс-предок ждет завершения своих потомков, после чего продолжает выполнение. В данном случае wait() вызывается в цикле три раза: первые два ожидают завершения процессов-потомков, последний вызов вернет неуспех, ибо ждать более некого.

int main(int argc, char **argv)

{

if ((fork()) == 0) /*первый процесс-потомок*/

{

execl(“/bin/echo”,”echo”,”this is”,”string 1”,0);

exit();

}

if ((fork()) == 0) /*второй процесс-потомок*/

{

execl(“/bin/echo”,”echo”,”this is”,”string 2”,0);

exit();

}

/*процесс-предок*/

printf(“process-father is waiting for childrenn”);

while(wait() != -1);

printf(“all children terminatedn”);

exit();

}

– Конец работы –

Эта тема принадлежит разделу:

ОПЕРАЦИОННЫЕ СИСТЕМЫ

Факультет вычислительной математики и кибернетики... Курынин Р В Машечкин И В Терехин А Н... ОПЕРАЦИОННЫЕ СИСТЕМЫ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Базовые средства управления процессами в ОС Unix

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основы архитектуры вычислительной системы
Современный компьютер и его программное обеспечение невозможно рассматривать в отдельности друг от друга. Рассматривая функционирование компьютера, мы всегда имеем в виду функционирование системы,

Структура ВС
Традиционным представлением структуры вычислительной системы является пирамида (Рис. 4). Каждый из уровней пирамиды определяет свой уровень абстракции свойств вычислительной системы. Основанием явл

Аппаратный уровень ВС
Итак, аппаратный уровень вычислительной системы определяется набором аппаратных компонентов и их характеристик, используемых вышестоящими уровнями иерархии и оказывающих влияние на эти уровни. С по

Управление физическими ресурсами ВС
Уровень управления физическими ресурсами — это первый уровень системного программного обеспечения вычислительной системы. Его назначение — систематизация и стандартизация правил пр

Системы программирования
Прежде[R3] чем начать рассматривать следующий уровень структурной организации вычислительных систем, обратимся к последовательности этапов, традиционно связываемых с разработкой и внедрением програ

Прикладные системы
Итак, мы переходим к вершине структурной организации вычислительных систем — к уровню прикладного программного обеспечения. Прикладная система — это програм

Основы компьютерной архитектуры
Изучение принципов структурной организации и функционирования основных компонентов операционной системы невозможно без рассмотрения основ архитектуры компьютера. Настоящая глава посвящена рассмотре

Структура, основные компоненты
Середина 40-х годов прошлого века может вправе считаться сроком зарождения современной вычислительной техники. С этой датой связана публикация американского математика венгерского происхождения Джо

Оперативное запоминающее устройство
Оперативное запоминающее устройство (RAM — Random-Access Memory) — это устройство хранения данных компьютера, в котором находится исполняемая в данный момент программа. ОЗУ еще называют основной па

Центральный процессор
Процессор, или центральный процессор (ЦП), компьютера обеспечивает последовательное выполнение машинных команд, составляющих программу, размещенну

Регистровая память
Регистровый файл (register file), или регистровая память, — совокупность устройств памяти процессора — т.н. регистров, предназначенных для временного хр

Устройство управления. Арифметико-логическое устройство
Устройство управления (control unit) — устройство, которое координирует выполнение команд программы процессором. Арифметико-логическое устройство (arithmetic/logic

КЭШ-память
Ключевой проблемой функционирования компьютеров является проблема несоответствия производительности центрального процессора и скорости доступа к информации, размещенной в оперативной памяти. Мы рас

Аппарат прерываний
Если мы обратим внимание на представленный выше рабочий цикл процессора, то увидим, что такая схема не предусматривает возможности обработки ошибочной ситуации, которая может возникнуть в системе в

Внешние устройства
Внешние[R6] устройства во многом определяют эксплуатационные характеристики как компьютера, так и вычислительной системы в целом. Размер экрана монитора, объем и производительность магнитных дисков

Внешние запоминающие устройства
Внешние запоминающие устройства (ВЗУ) предназначены для организации хранения данных и программ. Обычно операции чтения или записи с ВЗУ происходят некоторыми порциями данных, которые называются

Модели синхронизации при обмене с внешними устройствами
Важной характеристикой, во многом определяющей эффективность функционирования вычислительной системы, является модель синхронизации, поддерживаемая аппаратурой компьютера при взаимодействии централ

Потоки данных. Организация управления внешними устройствами
При рассмотрении работы любого компьютера имеют место два потока информации. Первый поток — это управляющая информация, второй поток — это поток данных, над которыми осуществляется обработка в прог

Иерархия памяти
Рассматривая вычислительную систему, или компьютер, можно выстроить некоторую последовательность устройств, предназначенных для хранения информации в некотором ранжированном порядке, иерархии. Этот

Аппаратная поддержка операционной системы и систем программирования
Если[R7] мы обратим свое внимание на рассмотрение компьютеров первого поколения, то это были компьютеры (computer — вычислитель) в прямом смысле слова, т.е. производители первых компь

Требования к аппаратуре для поддержки мультипрограммного режима
Выше уже речь уже шла о мультипрограммном режиме, когда в обработке могут находиться две и более программы пользователей, и каждая из этих программ может находиться в одном из трех

Проблемы, возникающие при исполнении программ
Рассмотрим круг проблем, которые, так или иначе, возникают при исполнении программ. Вложенные обращения к подпрограммам (Рис. 44). Несколько лет назад проводились исследов

Регистровые окна
Одно из более или менее новых решений, предназначенное для минимизации накладных расходов, связанных с обращениями к подпрограммам, основано на использовании в современных процессорах т.н.

Системный стек
Будем рассматривать системы, в которых имеется аппаратная поддержка стека. Это означает, что имеется регистр, который ссылается на вершину стека, и есть некоторый механизм, который поддерживает раб

Виртуальная память
Следующий аппарат компьютера, который также сильно связан с поддержкой программного обеспечения, — это аппарат виртуальной памяти. Что понимается под виртуальной памятью и в

Многомашинные, многопроцессорные ассоциации
В[R8] настоящее время одиночный компьютер можно сравнить с телефонным аппаратом без телефонной сети. Т.е., говоря об ЭВМ, мы подразумеваем машину в некотором окружении и взаимодействии с другими ма

Терминальные комплексы (ТК)
Терминальный комплекс — это многомашинная ассоциация, предназначенная для организации массового доступа удаленных и локальных пользователей к ресурсам некоторой вычислительной

Компьютерные сети
Развитие терминальных комплексов положило основу развития компьютерных сетей. И следующим шагом стала замена терминальных устройств компьютерами. Компьютерная сеть — э

Основы архитектуры операционных систем
Этот раздел мы начнем с определения базовых понятий, среди которых очень важным для нас станет понятие операционной системы. Этот термин имеет различные толкования в разных изданиях, мы остановимся

Структура ОС
Существует множество взглядов, касающихся структуры операционной системы, и в этом разделе речь пойдет о некоторых из них. Простейшая структурная организация основана на представлении опер

Логические функции ОС
Рассматривая ОС, ее функциональность можно представить в виде объединения некоторого фиксированного количества блоков функций. Состав этого набора варьирует от системы к системе, но в большинстве с

Типы операционных систем
Операционные системы можно классифицировать с точки зрения критериев эффективности и стратегий использования центрального процессора. Можно выделить три основных класса операционных систем:

Основные концепции
Выше уже встречалось понятие процесса и некоторые его определения. Итак, под процессом понимается совокупность машинных команд и данных, обрабатываем

Модели операционных систем
Ниже будем рассматривать некоторую модельную операционную систему. Будем считать, что этапы жизненного цикла процесса разделены на два блока. Первый блок — это размещение процесса,

Типы процессов
Рассматривая процесс в той или иной операционной системе, можно обнаружить, что встречается деление процессов на две категории: т.н. полновесные процессы и легков

Контекст процесса
Говоря о различных механизмах, происходящих в системе, часто затрагивался термин контекст процесса. Под контекстомпроцесса мы будем понимать совокупн

Процесс ОС Unix
Механизм управления и взаимодействия процессов в ОС Unix послужил во многом основой для развития операционных систем в целом, и логического блока управления процессами в частности. Во многом органи

Жизненный цикл процесса. Состояния процесса
Рассмотрим обобщенную и несколько упрощенную схему жизненного цикла процессов в ОС Unix (Рис. 79). Можно выделить целую совокупность состояний, в которых может находиться процесс.

Формирование процессов 0 и 1
Все механизмы взаимодействия процессов в ОС Unix унифицированы и основываются на связке системных вызовов fork-exec. Абсолютно все процесс в ОС Unix создается по приведенной схеме, но сущест

Способы организации взаимного исключения
В этом разделе речь пойдет о способах, позволяющих обеспечить работу с критическими ресурсами, т.е. тот способ работы с разделяемым ресурсом, при котором в любой момент времени с ним может работать

Базовые средства реализации взаимодействия процессов в ОС Unix
Сразу[R16] необходимо отметить, что во всех иллюстрациях организаций взаимодействия процессов будем рассматривать полновесные процессы, т.е. те «классические» процессы, которые представляются в вид

Сигналы
В ОС Unix присутствует т.н. аппарат сигналов, позволяющий одним процессам оказывать воздействия на другие процессы. Сигналы могут рассматриваться как средство уведомления пр

Неименованные каналы
Неименованный[R17] канал (или программный канал) представляется в виде области памяти на внешнем запоминающем устройстве, управ

Именованные каналы
Файловая система ОС Unix поддерживает некоторую совокупность файлов различных типов. Файловая система рассматривает каталоги как файлы специального типа каталог, обычные файлы, с которым мы

Очередь сообщений IPC
Система предоставляет возможность создания некоторого функционально расширенного аналога канала, но главное отличие заключается в том, что сообщения в очереди сообщений IPC типизированы. Каждое соо

Массив семафоров IPC
Семафоры представляют собой одну из форм IPC и используются для организации синхронизации взаимодействующих процессов. Рассмотрение функций для работы с семафорами мы начнем традиционно с функции с

Основные концепции
Под[R27] файловой системой (ФС) мы будем понимать часть операционной системы, представляющую собой совокупность организованных наборов данных, хранящихся на внешних запомина

Структурная организация файлов
С точки зрения структурной организации файлов имеется целый спектр различных подходов. Существует некоторая установившаяся систематизация методов структурной организации файлов. Рассмотрим модели в

Атрибуты файлов
Каждый файл обладает фиксированным набором параметров, характеризующих свойства и состояния файла, причем и долговременное (стратегическое), и оперативное состояния. Совокупность этих параметров на

Основные правила работы с файлами. Типовые программные интерфейсы
Практически все файловые системы при организации работы с файлами действуют по схожим сценариям, которые в общем случае состоят из трех основных блоков действий. Во-первых, это нач

Подходы в практической реализации файловой системы
Рассмотрим[R28] некоторые подходы в практической реализации файловой системы. Снова вернемся к понятию системного устройства — устройства, на котором, как считается аппарату

Модели реализации файлов
Первой тривиальной и самой эффективной с точки зрения минимизации накладных расходов является модель непрерывных файлов(Рис. 97). Данная модель подразумевает размещение каждого фай

Модели реализации каталогов
Существуют несколько подходов организации каталогов. Во-первых, каталог может представляться в виде таблицы, у которой в одной колонке находятся имена файлов, а в остальных — все атрибуты. Эта моде

Соответствие имени файла и его содержимого
Еще один момент, на который стоит обратить внимание при рассмотрении организации файловых систем, — это проблема соответствия между именем файла и содержимым этого файла. Как отмечалось вы

Координация использования пространства внешней памяти
С точки зрения организации использования пространства внешней памяти файловой системой существует несколько аспектов, на которые необходимо обратить внимание. Первый момент связан с проблемой выбор

Квотирование пространства файловой системы
Как отмечалось выше, файловая система должна обеспечивать контроль использования двух видов системных ресурсов — это регистрация файлов в каталогах (т.е. контроль количества имен файлов, которое мо

Надежность файловой системы
Понятие надежности файловой системы включает в себя множество требований, среди которых, в первую очередь, можно выделить то, что системные данные файловой системы должны обладать избыточной информ

Проверка целостности файловой системы
Далее речь пойдет о моделях организации контроля и исправления ошибочных ситуаций, связанных с целостностью файловой системы. Обратим внимание, что будет рассматриваться целостность именно файловой

Организация файловой системы ОС Unix. Виды файлов. Права доступа
Файл ОС Unix — это специальным образом именованный набор данных, размещенных в файловой системе. Файлы ОС Unix могут быть разных типов: - обычный файл

Логическая структура каталогов
Одной[R31] из характеристик ОС Unix является характеристика, кажущаяся на первый взгляд достаточно странной: система рекомендует размещать системную и пользовательскую информацию по некоторым прави

Работа с массивами номеров свободных блоков
Изначально номера всех свободных блоков файловой системы выстраиваются в единый связный список (Рис. 111), который размещается в нескольких блоках. Первый блок располагается в суперблоке (а значит,

Работа с массивом свободных индексных дескрипторов
Массив номеров свободных индексных дескрипторов — это массив фиксированного количества элементов. Изначально данный массив заполнен номерами свободных индексных дескрипторов. Если происход

Индексные дескрипторы. Адресация блоков файла
Выше уже отмечалось, что индексный дескриптор (Рис. 112) является системной структурой данных, содержащей атрибуты файла, а также всю оперативную информацию об организации и

Файл-каталог
Каталог файловой системы версии System V — это файл специального типа, его содержимое так же, как и у регулярных файлов, находится в рабочем пространстве файловой системы и по

Достоинства и недостатки файловой системы модели System V
Среди достоинств рассматриваемой файловой системы стоит отметить, что данная система является иерархичной. Также надо отметить, что за счет использования системного кэширования опт

Стратегии размещения
Работа системы основывается на трех концепциях. Первой концепцией является оптимизация размещения каталога. При создании каталога система осуществляет поиск кластера, наиболее своб

Внутренняя организация блоков
Размер блока в файловой системе FFS может варьироваться в достаточно широком диапазоне: предельный размер блока — 64 Кбайт. Как отмечалось выше, проблема выбора оптимального размера блока достаточн

Выделение пространства для файла
Рассмотрим алгоритм выделения пространства для файлов на следующем примере. Будем считать, что блок файловой системы поделен на 4 фрагмента. Пускай в системе хранятся файлы petya.txt и vasya.txt (Р

Структура каталога FFS
Каталог файловой системы FFS позволяет использовать имена файлов, длиной до 255 символов (Рис. 120). Каталог состоит из записей переменной длины, состоящих из блоков, размером в 4[R33] байта. Начал

Блокировка доступа к содержимому файла
Организация файловой системы ОС Unix позволяет открывать и работать с одним и тем же файлом произвольному числу процессов. Более того, один и тот же файл может быть многократно открыт в рамках одно

Управление оперативной памятью
Будем[R35] говорить о функциях управления оперативной памятью в контексте решения следующих основных задач. Во-первых, это осуществление контроля использования ресурса, т.е. одной из функций операт

Одиночное непрерывное распределение
Данная модель распределения оперативной памяти (Рис. 121) является одной из самых простых и основывается на том, что все адресное пространство подразделяется на два компонента. В одной части памяти

Страничное распределение
Об этой модели распределения оперативной памяти уже шла речь ранее, но тогда перед нами стояла задача лишь ввести читателя в курс дела, в этом же разделе будут обсуждаться более подробно современны

Сегментное распределение
Недостатком страничного распределения памяти является то, что при реализации этой модели процессу выделяется единый диапазон виртуальных адресов: от нуля до некоторого предельного значения. С одной

Сегментно-страничное распределение
Естественным развитием рассмотренной модели сегментного распределения памяти стала модель сегментно-страничного распределения. Эта модель рассматривает виртуальный адрес, как номер сегмента и смеще

Архитектура организации управления внешними устройствами
Как[R36] отмечалось ранее, при организации взаимодействия работы процессора и внешних устройств различают два потока информации: поток управляющей информации (т.е. поток команд какому-либо устройст

Программное управление внешними устройствами
Рассмотрим архитектуру программного управления внешними устройствами, которую можно представить в виде некоторой иерархии (Рис. 135). В основании лежит аппаратура, а далее следуют

Планирование дисковых обменов
Рассмотрим различные стратегии организации планирования дисковых обменов. При этом преследуется цель проиллюстрировать то многообразие подходов к решению данной проблемы, которые имеют место в мире

RAID-системы. Уровни RAID
Аббревиатура RAID может раскрываться двумя способами. RAID — Redundant Array of Independent (Inexpensive) Disks, или избыточный массив независимых (недорогих) дисков. На сегодняшний день обе расшиф

Файлы устройств, драйверы
Как[R37] уже неоднократно упоминалось, одной из основных особенностей ОС Unix является концепция файлов: практически все, с чем работает система, представляется в виде файлов. Внешние устройства не

Системные таблицы драйверов устройств
Для регистрации драйверов в системе используются две системные таблицы: таблицы блок-ориентированных устройств — bdevsw, и таблица байт-ориентированных устройств — cdevsw

Ситуации, вызывающие обращение к функциям драйвера
Список ситуаций, при которых происходит обращение к функциям драйверов, четко детерминирован. Во-первых, это старт системы и инициализация устройств и драйверов. При старте системы она имеет перече

Включение, удаление драйверов из системы
Изначально Unix-системы предполагали, как и большинство систем, «жесткие» статические встраивание драйверов в код ядра. Это означало, что при добавлении нового драйвера или удалении существующего н

Организация обмена данными с файлами
В этом разделе мы рассмотрим механизм организации обмена данными с файлами, после чего станет понятным, что происходит в системе, когда один и тот же файл открывается в системе одновременно несколь

Буферизация при блок-ориентированном обмене
Одним из достоинств ОС Unix является организация многоуровневой буферизации при выполнении неэффективных действий[R40] . В частности, для организации блок-ориентированных обменов система использует

Борьба со сбоями
Так или иначе, но в ОС Unix есть ряд традиционных средств для минимизации ущерба при отказах. Во-первых, в системе может быть задан параметр, определяющий промежутки времени, через которые осуществ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги