рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Транзистори

Транзистори - раздел Образование, Основи радіоелектроніки Транзистором Називають Напівпровідниковий Прилад, Що Має Три Виводи...

Транзистором називають напівпровідниковий прилад, що має три виводи (електроди) і здатний підсилювати потужність сигналу.

Назва приладу походить як словосполучення від двох англійських слів transfer та resistor, що в перекладі означає перетворювач опору. В першому наближенні транзистор можна розглядати як напівпровідниковий прилад з одним або двома n-p-переходами, опір яких змінюють за допомогою керувальної напруги, що подається на третій електрод.

Промисловість випускає багато типів різноманітних за конструкцією, технологією виготовлення і принципом дії транзисторів. Найпоширенішими з них є біполярні та польові. В біполярних транзисторах для створення струму використовуються носії заряду обох знаків, вони мають два n-p-переходи, а керування робочим струмом в них здійснюється зміною струму в керувальному електроді. Польові транзистори мають лише один n-p-перехід. Струм у них утворюється завдяки руху носіїв заряду одного знака, тому їх називають ще уніполярними, а керування здійснюється зміною електричного поля (напруги) на керувальному електроді.

Польові транзистори. За конструктивними особливостями їх можна поділити на дві групи: з керувальним n-p-переходом та з ізольованим затвором.

 

Рис. 3. 17. Схематичне зображення конструкції

n – канального польвого транзистора зі схемою його

вмикання та умовними графічними позначенням

Розглянемо польовий транзистор із керувальним п-р-переходом. Транзистор називають я n-канальним, якщо носіями заряду є електрони, і p-канальним, якщо такими носіями є дірки. На рис. 3.17 показано схематичне зображення конструкції n-канального польового транзистора зі схемою його вмикання та умовними графічними позначеннями. Струм прямує від витоку В до стоку С по каналу з електронною провідністю під дією напруги UСВ.

Значення струму в каналі залежить від напруги UСВ і провідності напівпровідникової пластини між витоком та стоком. Якщо UСВ = const, то струм у каналі IС залежить лише від ефективної площі поперечного перерізу каналу.

Керувальний електрод — затвор 3 створений з напівпровідника p- типу. Отже, між каналом і керувальним електродом утворюється n-p- перехід. Прикладання до нього запірної напруги Uзв спричинює розширення зони п-р-переходу, збідненої носіями заряду, та зменшення поперечного перерізу частини каналу, в якій є електрони провідності, що зумовлює зростання опору між витоком В і стоком С та зменшення струму IС. При деякому значенні напруги на затворі U ЗВ = U вілс, яке називається напругою відсікання, канал повністю перекривається збідненою носіями зоною і проходження струму припиняється. Оскільки на n-p-перехід подається весь час запірна напруга, в керувальному електроді струму немає, тобто керування струмом ІС здійснюється лише електричним полем, створюваним у п -р-переході.

Принцип дії p-канального польового транзистора аналогічний, різниця полягає лише в знаках прикладених до електродів напруг.

Рис. 3.18. Схематичне зображення конструкції польового транзистора з ізольованим затвором і його умовним позначенням

 

Польові транзистори з ізольованим затвором, як показано на рис. 3.18, мають структуру метал — діелектрик — напівпровідник (тому їх також називають МДН-транзисторами). Затвор 3 ізольований від каналу тонким шаром діелектрика (0,05...0,2 мкм). Металевий затвор і напівпровідниковий канал утворюють конденсатор. Зміна напруги, прикладеної до такого конденсатора, приводить до перерозподілу зарядів у каналі, що змінює його провідність.

Залежно від знака напруги, прикладеної до затвора, канал може збіднюватись або збагачуватись носіями заряду (електронами). Якщо напруга на затворі негативна, то електрони провідності виштовхуються з каналу в підкладку, канал збіднюється на кількість носіїв заряду, що зумовлює зменшення струму в каналі. Позитивна напруга на затворі сприяє втягуванню електронів з підкладки в канал. Цей режим дістав назву режиму збагачення. Зі збільшенням позитивної напруги струм у каналі зростає. Таким чином, на відміну від транзистора з керованим n-p-переходом, у транзисторі з ізольованим затвором на останній можна подавати як позитивну, так і негативну напругу. Наявність діелектрика між каналом та затвором забезпечує при позитивних напругах відсутність вхідного струму через затвор.

На рис. 3.19 зображено типові ВАХ польових транзисторів з керованим n-p-переходом (а, б) та з ізольованим затвором (в, г). На вихідних характеристиках можна виділити дві характерні ділянки: ділянку малих напруг UСВ, де стоковий струм 1С прямо пропорційний напрузі UСВ і транзистор можна розглядати як резистор, керований напругою UЗВ; ділянку

великих напруг UСВ, коли стоковий струм IС майже не залежить від напруги UСВ і транзистор є джерелом струму, керованим напругою UЗВ.

Основними параметрами польових транзисторів є:

статичний коефіцієнт підсилення напруги

; (3.9)

крутість характеристики прямої передачі сигналу

; (3.10)

Рис. 3.19. Типові ВАХ польвих транзисторів з керованим n-p-переходом (а, б) та з

ізольованим затвором (в, г)

 

вихідна провідність у режимі керованого джерела струму

. (3.11)

ЦІ параметри пов'язані між собою основним рівнянням транзистора

. (3.12)

Робочі частоти польових транзисторів лежать у межах до 1 ГГц. У приладів, побудованих з арсеніду галію з керованим переходом Шоткі, робочі частоти перевищують 40 ГГц.

Діапазон керувальних напруг польових транзисторів досягає кількох одиниць вольтів, їхні вхідні опори лежать у межах1О6...1О15 Ом, а вихідні дорівнюють сотням кілоомів. Відмітною особливістю польових транзисторів є малий рівень власного шуму та висока стійкість до температурних і радіаційних діянь.

Біполярні транзистори. Вони мають два n-p-переходи і можуть бути п -р - п- або р - п - p-структури. Фізичні процеси, що відбуваються в біполярних транзисторах обох типів, аналогічні, а схеми різняться лише знаками прикладених напруг.

Схематично будову площинного біполярного транзистора показано на рис. 3.20. Основним елементом його конструкції є кристал германію або силіцію з трьома областями різної провідності. Цей кристал як основа побудови транзистора називається базою. Крайні зони, що мають провідність, протилежну провідності бази, називаються емітером (звідки основні носії заряду виходять у базу) та колектором. Найпоширенішим способом утворення в тілі бази n-p-переходів є вплавлення і дифузія.

 

Рис 3.20. Схематичне зображення будови площинного біполярного транзистора та його умовне графічне позначення

 

Як випливає з рис. 3.20, емітерний (між емітером та базою) і колекторний (між базою та колектором) переходи ввімкнено назустріч один одному, тобто будь-яка полярність напруги між емітером і колектором не призводить до виникнення колекторного струму. Відстань між n-p-переходами менша за дифузійну довжину пробігу в ній неосновних носіїв заряду і становить кілька мікрометрів, а концентрація атомів домішки в базі незначна, в багато разів менша, ніж емітер. Це є основною умовою роботи транзистора.

Розглянемо принцип дії транзистора на прикладі приладу вплавленого типу з п -р - n-структурою. Такі транзистори ще називають бездрейфовими, оскільки перенесення неосновних носіїв заряду через базу в них здійснюється завдяки дифузії.

Для того щоб через транзистор почав проходити струм, треба відкрити один з n-p-переходів. Для відкривання емітерного переходу між емітером і базою транзистора вмикають джерело UБЕ у прямому напрямку. Потенціальний бар'єр емітерного переходу знижується, опір його зменшується й утворюється емітерний струм IЕ, зумовлений інжекцією електронів з емітера в базу. Між емітером і колектором прикладено напругу UКЕ значно більшу за UБЕ, тобто колекторний перехід закритий, що збільшує його потенціальний бар'єр й опір. Оскільки ширина бази менша за дифузійну довжину пробігу в ній неосновних носіїв (а електрони для бази з дірковим типом провідності є неосновними носіями), переважна більшість електронів, інжектованих з емітера, дійде до колекторного переходу і буде захоплена його прискорювальним полем та втягнута в колектор, утворюючи струм колектора IК. Незначна частина електронів рекомбінує з основними носіями бази — дірками, створюючи тим самим струм бази IБ. Цей струм тим менший, чим меншими є ширина бази і концентрація дірок у ній. Для того щоб збільшити або зменшити колекторний струм, треба відповідно збільшити або зменшити кількість електронів, що виходять з емітера, тобто збільшити або зменшити струм бази.

Отже, керування роботою біполярного транзистора, на відміну від польового, відбувається не зміною електричного поля, прикладеного перпендикулярно до напрямку руху носіїв заряду, а зміною напруги, яка збігається з напрямком руху носіїв заряду, тобто зміною електричного струму бази. Тому біполярний транзистор, на відміну від польового, має вхідний струм і відносно невеликий вхідний опір, тобто на керування провідністю біполярного транзистора в колі бази витрачається певна потужність. Великий опір зміщеного в зворотному напрямку колекторного переходу дає змогу вибрати великий опір навантаження Rн, а тому потужність сигналу на виході може бути значно більшою за потужність, витрачену в колі емітерного переходу транзистора. Зміна напруги UБЕ спричинює зміну струмів IБ та IЕ, що відповідно змінює струм IК. Отже, основними рівняннями, які характеризують роботу транзистора при постійних і змінних струмах, є такі:

IЕ = IБ + IК; (3.13)

ΔIЕ = ΔIБ + ΔIК. (3.14)

Оскільки біполярний транзистор — це напівпровідниковий прилад, керований струмом, основними фізичними параметрами, що характеризують його роботу і властивості, є коефіцієнти передачі струму емітера α і струму бази β при постійній напрузі UКЕ:

; . (3.15)

Співвідношення між цими коефіцієнтами згідно з (3.9) можна записати так:

. (3.16)

Крім того, до основних параметрів біполярного транзистора належать диференціальні опори емітерного rЕ та колекторного rК переходів і вхідний опір rБ транзистора:

; ; . (3.17)

Слід мати на увазі, що на струм в колі емітер — колектор накладається зворотний струм колектора , зумовлений тепловою генерацією електронно-діркових пар поблизу колекторного переходу. Тому рівняння колекторного струму має вигляд

. (3.18)

Однак IК0 <<IЕ і здебільшого струмом IК0 нехтують. Із зростанням температури частка цього струму в загальному колекторному струмі значно зростає. Можна вважати, що струм IК0 подвоюється при зростанні температури на кожні 10 °С. Це призводить до збільшення частки некерованого струму в складі IК, що спричинює температурну нестабільність у роботі транзистора. Для запобігання цьому явищу необхідно вживати заходів щодо температурної стабілізації та температурної компенсації в транзисторних схемах.

Частотні властивості біполярних транзисторів зумовлюються двома факторами: ємностями n-p-переходів СЕ і СК, які на високих частотах шунтують опори емітерного rЕ та колекторного rК переходів (особливо значний вплив на високих частотах має ємність СК), а також відставанням за фазою змінного колекторного струму від емітерного внаслідок інерційності процесу проходження носіїв заряду через базу. Час прольоту носіїв через базу у звичайних транзисторів дорівнює приблизно 0,1 мкс. На частотах у десятки мегагерців цей час призводить до зсуву фаз між змінними складовими струмів IЕ та IК, через що зменшується коефіцієнт передачі струму β. Частота, якій відповідає зменшення коефіцієнта β в раза, називається граничною частотою транзистора fβ.

При практичному використанні транзисторів залежно від прикладених до їхніх електродів напруг розрізняють чотири режими роботи:

1. Режим активного підсилення, коли емітернии перехід зміщено в прямому напрямку, а колекторний — у зворотному. Цей режим є основним для побудови більшості схем радіоелектронних пристроїв.

2. Режим насичення, коли UБЕ > UКЕ, обидва переходи зміщено в прямому напрямку, струм IК максимальний і практично не залежить від струму IБ, транзистор повністю відкритий. Внаслідок малого опору відкритого колекторного переходу при великому струмі IК в транзисторі розсіюється мала потужність, тому цей режим є основним при побудові перемикальних схем.

3. Режим відсікання струму, при якому обидва переходи закрито і через транзистор проходить лише струм IКо . Це теж режим перемикальних схем, який фіксує стан, протилежний станові насичення. Він використовується також при деяких нелінійних перетвореннях сигналів та у двотактних схемах.

4.Режим інверсійний, який характеризується тим, що до емітерного переходу підводиться зворотна напруга, а до колекторного — пряма, тобто емітер і колектор міняються місцями.

На рис. 3.21 показано типові ВАХ біполярного транзистора: вхідну (а), прямої передачі (б) і вихідні (в). Вони відрізняються від наведених у більшості довідників і загальноприйнятих тим, що на вихідних характеристиках за параметр прийнято не струм бази IБ, а напругу база — емітер UБЕ. Це дає змогу порівнювати їх з характеристиками польового транзистора і вести розрахунки в єдиній системі узагальнених Y-параметрів.

Як і в польових транзисторах, для визначення підсилювальних властивостей біполярного транзистора корисно користуватися крутістю характеристики прямої передачі

 

 
 

Рис. 3.21. Типові ВАХ біполярного транзистора: вхідна (а), прямої передачі (б) і вихідні (в)

 

сигналу

. (3.19)

Для біполярного транзистора можна записати основне рівняння, що об'єднує його фізичні параметри:

. (3.20)

Робочі частоти біполярних транзисторів лежать у межах десятків і сотень мегагерців. Діапазон керувальних напруг у малопотужних транзисторах становить десятки мілівольтів, а у транзисторів середньої потужності — сотні мілівольтів. Вони мають невеликий вхідний опір при вихідному опорі порядку десятків — сотень кілоомів.

Позначення польових і біполярних транзисторів у довідниках, на схемах і в технічних документах здійснюється за тією самою системою, що й напівпровідникових діодів. Тільки в другому елементі кодового запису після позначення виду напівпровідникового матеріалу для польових транзисторів застосовується літера П, а для біполярних — Т.

 

– Конец работы –

Эта тема принадлежит разделу:

Основи радіоелектроніки

Затверджено Міністерством освіти i науки України... Підручник для студентів вищих педагогічних...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Транзистори

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СПИСОК СКОРОЧЕНЬ
    АЛП – арифметико-логічний пристрій АМ – амплітудна модуляція АРП – автоматичне регулювання АХ – амплітудна характеристика АЦП – а

ПЕРЕДМОВА
Політехнічна і практична спрямованість підготовки майбутніх учителів фізики значною мірою залежить від опанування ними необхідного обсягу знань та практичних умінь стосовно загальнотехнічних дисцип

Сигнали та їхні параметри.
  Сигнал — це будь-який фізичний носій інформації, кількісні характеристики змінюються з часом. Це фізичний процес, здатний діяти на органи чуття людини або технічні пристрої (

Сигнали повідомлення
Реальні сигнали повідомлення (наприклад, електричні сигнали мови, музики, зображення) є випадковими неперіодичними функціями часу. Для спрощення аналізу вважаємо їx складними періодичними детерміно

Дискретизація аналогових сигналів повідомлення
  Якщо аналогові сигнали, задані функцією , розглядати в кінцевому проміжку часу, то зовсім не обов'язково враховувати всю нес

Багатоканальна передача інформації
  Розглянуті аналогові і цифрові сигнали повідомлення можуть бути використані для передачі по лінії зв'язку одночасно тільки одного повідомлення. Такий зв'язок називається однокана

Деталі й елементи радіоелектронних кіл
Будь-який складний радіоелектронний пристрій складається з обмеженого набору відносно простих деталей, які при з'єднанні утворюють електричні кола. Електричне коло — це сукупність з'єднаних

Схеми радіоелектронних пристроїв
  Для побудови, аналізу й унаочнення радіоелектронних пристроїв користуються різноманітними схемами, найпоширенішими з яких є структурні, функціональні, принципові (повні), монтажні (

Аналіз властивостей радіоелектронних кіл
  Існує кілька способів аналізу властивостей радіоелектронних кіл: аналітичні, графічні, графоаналітичні. Залежно від схеми, режиму її роботи, виду сигналу, цілей аналізу вибир

Чотириполюсника
Розглянемо навантажений чотириполюсник (див. рис. 2.6, б), в якому значення струму на виході замінимо за законом Ома . Тоді система рівнянь

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Діелектричних матеріалів
  Найпоширенішими радіодеталями як у дискретному, так і в інтегральному виконанні є резистори та конденсатори, які виготовляють з різно­манітних провідникових матеріалів з використанн

Резистори
  За зонною теорією провідності до напівпровідників належать речовини, в яких ширина забороненої зони не перевищує 3 еВ, або такі, питома електропровідність яких лежить у межах від 10

Електронно-дірковий перехід і його властивості. Напівпровідникові діоди
  Розглянуті вище властивості однорідних напівпровідників використовуються лише для побудови напівпровідникових резисторів. Більшість же напівпровідникових приладів й елементів мікрое

Електровакуумні прилади
  Найпростіший електровакуумний прилад — діод (рис. 3.22, а) має вигляд балона, тиск повітря в якому не перевищує 10–7…10–8 мм. рт. ст., де знаходя

Чотириполюсники
  Розглянуті в п. 3.5 та 3.6 активні елементи радіоелектронних кіл мають різну фізичну природу, будову і принцип дії, але в радіоелектронних пристроях вони виконують одну й ту саму фу

Транзисторів та електронних ламп
  Режим роботи транзисторів й електронних ламп забезпечується початковим положенням РТ на їхніх ВАХ, яке визначається значеннями постійних напруг на електродах за відсутності сигналу.

Напівпровідникові інтегральні мікросхеми
  Розглянуті радіодеталі – резистори, конденсатори, діоди, транзистори, електровакуумні прилади тощо – складають дискретну елементну 6азу радіоелектроніки. Кожна з цих деталей виготов

Мікроелектроніку
Підвищення рівня інтеграції мікросхем І пов'язане з ним зменшення розмірів елементів мають свої межі. Наприклад, Інтеграція більш як 10е елементів в 1 см3 кристала стає вже ек

Електронно-променеві прилади
Електронно-променевими називають електровакуумні прилади, в яких для перетворення сигналів інформації використовують потік електронів у вигляді гостро сфокусованого променя або пучка пром

Типи електричних фільтрів
  Однією з поширених операцій, що виконуються в радіоелектронних колах, є виділення певного сигналу або частини його спектра з сукуп­ності інших сигналів та завад. Для цього використо

Властивості найпростіших RС-елементів
Для виділення сигналів у найпростіших RС-фільтрах використовується залежність реактивного опору конденсатора, а разом із ним і коефіцієнта передачі чотириполюсника, від частоти. Для поліпшен

Вибірні властивості коливального контуру
Резонансні фільтри, або -фільтри, складають з коливальних конту­рів, тобто з каскадно з’єднаних реактивних елементів різного виду. В них заб

Загальна структура і типи підсилювачів
Підсилення — це найпростіший і базовий вид будь-яких перетворень електричних сигналів. Навіть у тих випадках, коли для виконання основної функції (наприклад, перетворення спектрів сигналів) досить

Каскаду
Для підсилення широкосмугових сигналів найчастіше застосовуються аперіодичні підсилювачі. Вони ж є основою для створення підсилювальних мікросхем і вибірних підсилювачів, побудованих на

Каскаду
Для підсилення широкосмугових сигналів найчастіше застосовуються аперіодичні підсилювачі. Вони ж є основою для створення підсилювальних мікросхем і вибірних підсилювачів, побудованих на

Резонансні підсилювачі
Ці підсилювачі найчастіше використовуються для виділення та підсилення радіочастотних сигналів. Це — суто вузькосмугові вибірні підсилювачі, основними параметрами яких є максимальний коефіцієнт під

Підсилювачі потужності
  Ці підсилювачі призначені для забезпечення потрібної потужності сигналу на опорі навантаження при мінімальному значенні коефіцієнта нелінійних спотворень і максимальному ККД. Підсил

Підсилювачі постійного струму й операційні підсилювачі
  Якщо миттєві значення сигналу змінюються дуже повільно, то нижня гранична частота смуги пропускання підсилювача має прямувати до нуля. З цією метою каскади підсилювачів з'єднують мі

Загальна структура і типи перетворювачів сигналів
  Перетворення електричних сигналів поряд з їх виділенням та підсиленням є однією з основних функцій радіоелектроніки. Існує два виду перетворення сигналів: логічне перетворенн

Модуляція і схеми модуляторів
Модуляція — це процес, завдяки якому з використанням допоміжного коливання спектр керувального сигналу переноситься до ділянки вищих частот із метою здійснення багатоканальної передачі інфор

Демодуляція і схеми детекторів
  За визначенням демодуляція (детектування) сигналу — це процес, зворотний його модуляції. Згідно з п. 6.1 детектування може відбуватися як у параметричних (синхронне детектува

Перетворення і множення частоти
Перетворення частоти — це лінійне перенесення спектра радіосигналу з однієї області частот в іншу, як правило, більш низькочастотну. При цьому форма обвідної модульованого сигналу та його

Логічні перетворення цифрових сигналів і базові логічні елементи
  Логічні перетворювачі електричних сигналів є основою побудови всіх цифрових схем і пристроїв. За формальними ознаками вони підпадають під узагальнену структурну схему (див. рис. 6.1

Загальна структура і типи генераторів
  Генератори електричних коливань перетворюють енергію джерела живлення на енергію змінного струму, частота якого визначається параметрами коливальної системи. Існують різні способи г

Автогенератори з коливальним контуром
  Автогенератор із коливальним контуром — це резонансний підсилювач з колом 33, побудований за трансформаторною, автотрансформаторною або ємнісною схемами. Підсилювач може бути

Підсилювачах
  Застосування автогенераторів з коливальним контуром має обмеження як при надвисоких частотах, так і при низьких. із зростанням частоти розміри коливальної системи зменшуються настіл

Генератори релаксаційних коливань
Генераторами релаксаційних коливань називають такі джерела періодичних імпульсних сигналів, в основі роботи яких лежить періодичне накопичення енергії від джерела постійного струму в ємно

Тригери
Тригером називають пристрій, що має два стійких стани рівноваги і здатний стрибком переходити з одного стану стійкої рівноваги в інший під дією зовнішнього (керувального) сигналу запуску.

Використовуваних радіочастот
  Першим технічним застосуванням радіоелектроніки було передавання інформації на відстань за допомогою електромагнітних хвиль, або радіохвиль. Для його здійснення треба, утворити кана

Радіопередавачів
Структурні схеми радіопередавачів, їхні конструкції та принципові схеми значною мірою визначаються основними технічними показниками: призначенням і місцем експлуатації; потужністю сигналу в антені

Радіоприймачів
  Усі радіоприймачі можна поділити на дві великі групи: побутові та професійні. Перші призначені для приймання програм радіомовлення і телебачення. Ними користується нас

Особливості побудови деяких елементів радіоприймачів
  Ці особливості пов'язані з широкодіапазонністю радіоприймачів як за частотою, так i за динамічністю сигналів на вході. Висока якість приймання потребує в цих умовах зберіганн

Принципи телебачення
  Сукупністъ оптичних, електронних i радіотехнічних пристроїв, за допомогою яких зображення перетворюєься на електричні сигнали, після чого вони передаються на відстань, синтезуються

Структурні схеми монохромних телевізорів
  За принципом дії телевізійні приймачі можуть бути прямого підсилення i супергетеродинні. Вони можуть бути побудовані за дво- або одноканальною схемою. Із збільшенням кількості телев

Принципи радіолокації
Радіолокація — це галузь радіоелектроніки, за допомогою якої при використанні електромагнітного випромінювання виявляють, визначають місцеположення у просторі, напрямок i швидкістъ руху (

Радіолокація неперервним сигналом
  Найперші РЛС були саме доплерівськими станціями неперервного випромінювання. Спрощену структурну схему такої станції показано на рис. 10.2. Станція складається з генератора високоча

Радіолокація імпульсним сигналом
  На рис. 10.4 зображено спрощену структурну схему імпульсної РЛС. Її роботою керує генератор синхроімпульсів ГСІ. Від його дуже коротких імпульсів у вcix блоках РЛС починається відлі

Конструктивні особливості окремих елементів РЛС
  Виявлення та визначення координат i параметрів руху об'єктів у просторі за допомогою електромагнітних хвиль — досить складна суперечлива технічна проблема, однією з основних умов ус

Оброблення цифрової інформації
Електронні обчислювальні машини (комп'ютери) — це засоби перетворення інформації, які є програмованими автоматами. Існують машини для оброблення інформації в аналоговій формі та

Апаратні засоби ЕОМ
  Будь-яка ЕОМ складається з електронних операційних пристроїв, що виконують операції, задані програмою, і генерують, транспортують та перетворюють електричні імпульси, якими позначен

Комп’ютерні мережі
З'єднання кількох комп’ютерів у систему значно розширює можливості користувачів. Для організації комп’ютерної мережі в кожному комп’ютері встановлюється спеціальна плата — мережний адаптер. У мереж

Основні типи комп’ютерів
  Практично всі типи ЕОМ побудовано за принципами і схемою, розглянутими вище. Проте залежно від конкретних сфер застосування вони різняться кількісними характеристиками, структурою а

Основні операційні елементи обчислювальної техніки
  Як зазначено при розгляді апаратних засобів обчислювальних систем, оброблення цифрової інформації полягає у виконанні елементарних операцій з електричними імпульсами, що відтворюють

Питания радіоелектроніки в курсі фізики i спецкурсах
  Вивченню питань радіоелектроніки в структурі базового курсу фізики приділяється значна увага. В шести великих розділах завершального ступеня навчання i майже десяти лабораторних роб

Радіоелектроніка у кабінеті фізики i засобах навчання
  Кабінет фізики сучасної загальноосвітньої школи досить насичений радіоелектронною апаратурою та обладнанням. Його можна поділити на такі основні групи: навчальні моделі для вивчення

Радіоелектроніка в позакласній роботі
  Через те, що радіоелектроніка оточує нас у повсякденному житті, завдяки багатьом своїм загадковим явищам та ефектам i різноманітності застосування вона викликае жвавий інтерес навит

Елементи радіоелектроніки в технічній творчості школярів
  Однією з найбільш гнучких та ефективних форм опанування теоретичних знань радіоелектроніки i набуття практичних навичок школярами є фізико-технічний гурток або факультатив, що пєедн

ТА РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ
1.Алгинин Б. Е. Кружок электронной автоматики.— М.: Просвещение, 1990. —192 с. 2.Бобровников Л. 3. Радиотехника и электроника. — М.: Недра,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги