рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вибірні властивості коливального контуру

Вибірні властивості коливального контуру - раздел Образование, Основи радіоелектроніки Резонансні Фільтри, Або ...

Резонансні фільтри, або -фільтри, складають з коливальних конту­рів, тобто з каскадно з’єднаних реактивних елементів різного виду. В них забезпечуються класичні умови виникнення власних коливань, а саме: перетворення енергії одного виду на інший при мінімальних необорот­них утратах енергії за період. В електричному колі — це обмін енергією між конденсатором (енергія електричного поля) і котушкою індуктивності (енергія магнітного поля).

Аналіз таких фільтрів можна вести на підставі загальної теорії коли­вальних систем, розв'язуючи диференціальні рівняння другого порядку.

Специфіка аналізу електричних коливальних систем полягає в тому, що тут маємо два види суттєво різних резонансів, властивості яких використовуються в радіоелектронних пристроях. Маються на увазі послідовний і паралельний резонанси, а також різноманітні способи утворення зв’язаних контурів. Ми поставимо за мету розглянути лише властивості окремого коливального контуру.

Вільні коливання в коливальному контурі — це майже періодичний процес обміну енергією, одноразово внесеною в контур, між електричним полем конденсатора та магнітним полем котушки. Для спрощення вважаємо спочатку, що контур ідеальний і втратами енергії в першому наближенні можна знехтувати, а максимальна енергія електричного поля дорівнює максимальній енергії магнітного поля.

. (4.25)

Обмін енергією в контурі відбувається за гармонічним законом, тобто

(4.26)

З рівняння (4.25) з урахуванням третього рівняння (4.26) знаходимо частоту власних коливань і хвильовий опір контуру:

; . (4.27)

У реальному коливальному контурі завжди є необоротні теплові втрати енергії, рівність (4.25) порушується і коливання з часом загасають. Це враховують уведенням у його схему (рис. 4.7, а) розподіленого еквівалентного опору . Фізичні процеси в такому контурі можна описати рівнянням другого закону Кірхгофа

(4.28)

Рис. 4.7. Схема реального контуру (а) і вільні згасаючі коливання в ньому (б)

 

Після диференціювання (4.28) і ділення на дістанемо лінійне диференціальне рівняння другого порядку

, (4.29)

яке, користуючись методом підстановки, можна записати так:

. (4.30)

Оскільки остання рівність викопується при будь-яких значеннях , вираз у дужках дорівнює нулю, що можливе лише за умови

, (4.31)

де — стала часу контуру.

Якщо виконується умова існування вільних коливань , то другим членом під коренем у (4.31) можна знехтувати і розв’язок рівняння наближено записати у вигляді

, (4.32)

тобто в реальному коливальному контурі відбуваються вільні майже синусоїдні коливання струму (напруги), які загасають за експонентою (рис. 47. б). За осцилограмою можна визначити параметр, що кількісно оцінює швидкість загасання коливань. Це логарифмічний декремент загасання , який є натуральним логарифмом відношення двох послідовних (через період То ) амплітуд напруги струму в контурі при вільних коливаннях:

. ( 4.33)

Для обчислення за (4.33) логарифмічного декременту загасання слід виміряти сусідні максимуми напруги на екрані осцилографа і прологарифмувати їх відношення.

Логарифмічний декремент загасання пов'язаний з іншим параметром коливального контуру добротністю Q — величиною, пропорційною відношенню повної енергії контуру до енергії, що втрачається в ньому за період коливань. Між добротністю та іншими параметрами контуру існує такий зв’язок:

. (4.34)

Збільшення втрат енергії в контурі, які відбуваються не тільки на власному розподіленому опорі , а й на опорі зовнішнього навантаження , який шунтує контур, зменшує його добротність і здатність до підтримки вільних коливань. Можна довести, що за умови

або (4.35)

контур перетворюється на аперіодичну систему.

Вимушені коливання в реальному контурі створюють завдяки періодичному підведенні до нього енергії від зовнішнього джерела до компенсації необоротних втрат енергії в контурі. Якщо період зміни напруги зовнішнього джерела дорівнює періоду вільних коливань у контурі, то в ньому спостерігається резонанс. Залежно від способу з’єднання котушки і конденсатора з генератором у контурі при вимушених коливаннях може бути резонанс напруг (послідовний контур) або резонанс струмів (паралельний контур).

В обох випадках на резонансній частоті коливальний контур еквівалентний активному опору, а основною характеристикою контуру є АЧХ (резонансна крива), що визначає його вибірні можливості. Розглянемо властивості послідовного і паралельного контурів поблизу резонансної частоти.

Послідовний коливальний контур. Щоб визначити залежність коефіцієнта передачі та вхідного опору контуру від частоти, до входу чотириполюсника, зображеного на рис.4.8,а, підведемо синусоїдну напругу

. (4.36)

 

 

Коефіцієнт передачі чотириполюсника

, (4.37)

де — вхідний опір послідовного контуру.

Рис. 4.8. Еквівалентна схема послідовного коливного контуру (а) і його АЧХ (б)

Розглядаючи розстроювання контуру лише поблизу резонансної частоти, тобто , виконаємо очевидні елементарні перетворення:

, (4.38)

де — абсолютне розстроювання контуру відносно резонансної частоти; —відносне розстроювання

На резонансній частоті, коли ,

; . (4.39)

Нормоване відносно коефіцієнта передачі рівняння АЧХ контуру має вигляд

. (4.40)

На АЧХ контуру (рис. 4.8, б) визначають три характерні рівні: 0,9 М. 0,7 М; 0,1 М. Ширина резонансної кривої на рівні 0,7 називається смугою пропускання контуру. Резонансна частота, смуга пропускання і добротність контуру пов’язані між собою співвідношенням

. (4.41)

Важливим параметром контуру, що визначає його селективні властивості як фільтра, є коефіцієнт прямокутності АЧХ, або вибірність. Він визначається як відношення ширини резонансної кривої на рівні 0,9 до ширини цієї кривої на рівні 0,1:

. (4.42)

Послідовний коливальний контур як фільтр можна використовувати тільки з низькоомними джерелами сигналу, оскільки власний опір джерела вмикається послідовно з опором контуру і збільшує його, що призводить до зменшення еквівалентної добротності та вибірних властивостей контуру. Найчастіше послідовний коливальний контур застосовують у вхідних колах радіоприймачів як перший вибірний елемент, за допомогою якого наведена в антені напруга від сигналу радіостанції, на яку настроєно контур, може збільшуватись майже в разів відносно напруг сигналів від сусідніх радіостанцій.

Цей контур може відігравати роль режекторного фільтра щодо дії сильної завади на фіксованій частоті, як це показано на рис. 4.9, а. Контури і настроєно на різні частоти: перший, настроєний на частоту завади , створює майже коротке замикання між точками та ; другий настроюється на частоти тих станцій, сигнали яких треба прийняти (рис. 4.9, б). Така ситуація виникає тоді, коли на рухомому об'єкті (наприклад, літаку) працюють приймач і власний передавач або коли діє постійна промислова завада.

Рис. 4.9. Схема вхідного кола радіоприймача з режекторним фільтром (а) і його АЧХ (б)

 

При вивченні фізики в загальноосвітній школі проводять демонстраційні та лабораторні експерименти з послідовним коливальним контуром, які мають свої особливості, зумовлені технічними пара; метрами шкільного обладнання і методичними міркуваннями. Пери за все слід ураховувати, що частота власних коливань контуру не може перевищувати 10кГц. Домогтися цього можна збільшенням індуктивності , а не ємності . В іншому випадку буде дуже малим хвильовий опір контуру і коливання в ньому не виникатимуть. Для здобуття резонансу треба встановити власний опір шкільного генератора найменшим, а вольтметр для вимірювання напруги брати з найбільшим опором або використовувати міліамперметр і вимірювати резонансний струм.

Паралельний коливальний контур. Його еквівалентну схему при живленні від

Рис. 4.10. Еквівалентна схема паралельного коливного контуру при живленні від низькоомного генератора гармонічного сигналу

 

низькоомного генератора гармонічного сигналу зображено на рис. 4.10. Коефіцієнт передачі самого контуру дорівнює одиниці, але якщо розглядати чотириполюсник відносно входу , тобто включити до нього ще й внутрішній опір генератора , то відносно ідеального генератора коефіцієнт передачі чотириполюсника

. (4.43)

У будь-якому випадку тим більше відрізняється від одиниці, чим більшою є нерівність . Значення в цьому разі залежить від час­тоти і сягає максимуму при резонансі, тому що значення одного з опорів подільника залежить від частоти.

Розглянемо властивості вхідного опору паралельного контуру

. (4.44)

При будь-якій частоті поблизу резонансної вираз у чисельнику , а вираз у знаменнику має вигляд (4.38). Тому вираз (4.44) перепишемо у вигляді

. (4.45)

При резонансі

. (4.46)

Якщо послідовний контур на резонансній частоті мав мінімальний опір, то опір паралельного контуру при резонансі максимально можливий. Залежність вхідного опору паралельного контуру від частоти визначається виразом, записаним у знаменнику (4.44).

Усі сформульовані вище висновки відносно рівняння нормованої АЧХ смуги пропускання і резонансної частоти справедливі також для паралельного контуру. Проте, на відміну від послідовного, паралельний контур зберігає всі свої властивості лише при великих значеннях , тобто його можна застосовувати тільки з високоомними джерелами сигналу Оскільки власний опір еквівалентного ідеального генератора дорівнює нулю, можна вважати, що опір приєднано паралельно контуру й еквівалентний опір такого з’єднання

, (4.47)

тобто контур ніби шунтується опором .

У реальних умовах кожен контур розташовується між джерелом і споживачем сигналу (навантаженням), який можна замінити опором . Отже, еквівалентний опір паралельного з’єднання трьох опорів

. (4.48)

Відповідно еквівалентна добротність шунтованого контуру

. (4.49)

Таким чином, у реальних умовах через вплив опорівта еквівалентна добротність паралельного коливального контуру зменшується відносно його власної добротності, що призводить до зниження його вибірних властивостей. Особливо це слід ураховувати при використанні паралельного контуру в колах з біполярними транзисторами.

Одним з ефективних засобів зменшення впливу опорів й на еквівалентні параметри паралельного контуру є неповне вмикання навантаження та генератора в контур, тобто приєднання лише частини одного з його елементів. Найчастіше таким елементом є котушка і тоді неповне її вмикання можна розглядати як автотрансформаторний зв'язок контуру3 генератором та навантаженням (рис. 4.11).

З теорії трансформаторів відомо, що при коефіцієнті трансформації відбувається не тільки зміна напруги і струму в разів, а й зміна еквівалентного опору в разів, тобто опори й замінюються еквівалентний опорами

; , (4.50)

де ; — коефіцієнти вмикання з боку джерела сигналу та навантаження.

Оскільки , , значення еквівалентних опорів значно більші, ніж опорів, приєднаних до контуру. Внаслідок цього зменшується шунтувальна дія опорів схеми на контур, а його еквівалентна добротність збільшується. Безумовно, за такий здобуток доводиться позбавитися частиною коефіцієнта передачі контуру, але це легко компенсувати збільшенням підсилення сигналу в наступних колах. Головна ж властивість коливального контуру — вибірність — при цьому зберігається.

Зважаючи на властивості паралельного коливального контуру його застосовують у резонансних підсилювачах, генераторах гармонічних сигналів, модуляторах, перетворювачах частоти сигналів як їхнє власне навантаження, а також для побудови різноманітних смугових фільтрів. Оскільки вибірні властивості окремих коливальних контурів не завжди задовольняють практичні потреби, використовують системи зв'язаних контурів.

 

 

Рис. 4.11. Схема неповного вмикання котушки в паралельний коливальний контур

 

– Конец работы –

Эта тема принадлежит разделу:

Основи радіоелектроніки

Затверджено Міністерством освіти i науки України... Підручник для студентів вищих педагогічних...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вибірні властивості коливального контуру

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СПИСОК СКОРОЧЕНЬ
    АЛП – арифметико-логічний пристрій АМ – амплітудна модуляція АРП – автоматичне регулювання АХ – амплітудна характеристика АЦП – а

ПЕРЕДМОВА
Політехнічна і практична спрямованість підготовки майбутніх учителів фізики значною мірою залежить від опанування ними необхідного обсягу знань та практичних умінь стосовно загальнотехнічних дисцип

Сигнали та їхні параметри.
  Сигнал — це будь-який фізичний носій інформації, кількісні характеристики змінюються з часом. Це фізичний процес, здатний діяти на органи чуття людини або технічні пристрої (

Сигнали повідомлення
Реальні сигнали повідомлення (наприклад, електричні сигнали мови, музики, зображення) є випадковими неперіодичними функціями часу. Для спрощення аналізу вважаємо їx складними періодичними детерміно

Дискретизація аналогових сигналів повідомлення
  Якщо аналогові сигнали, задані функцією , розглядати в кінцевому проміжку часу, то зовсім не обов'язково враховувати всю нес

Багатоканальна передача інформації
  Розглянуті аналогові і цифрові сигнали повідомлення можуть бути використані для передачі по лінії зв'язку одночасно тільки одного повідомлення. Такий зв'язок називається однокана

Деталі й елементи радіоелектронних кіл
Будь-який складний радіоелектронний пристрій складається з обмеженого набору відносно простих деталей, які при з'єднанні утворюють електричні кола. Електричне коло — це сукупність з'єднаних

Схеми радіоелектронних пристроїв
  Для побудови, аналізу й унаочнення радіоелектронних пристроїв користуються різноманітними схемами, найпоширенішими з яких є структурні, функціональні, принципові (повні), монтажні (

Аналіз властивостей радіоелектронних кіл
  Існує кілька способів аналізу властивостей радіоелектронних кіл: аналітичні, графічні, графоаналітичні. Залежно від схеми, режиму її роботи, виду сигналу, цілей аналізу вибир

Чотириполюсника
Розглянемо навантажений чотириполюсник (див. рис. 2.6, б), в якому значення струму на виході замінимо за законом Ома . Тоді система рівнянь

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Вимірювання основних параметрів чотириполюсників
  Усі розглянуті вище характеристики та параметри чотириполюсника можна одержати експериментально прямим вимірюванням й обчисленням. Для визначення малосигнальних параметрів

Діелектричних матеріалів
  Найпоширенішими радіодеталями як у дискретному, так і в інтегральному виконанні є резистори та конденсатори, які виготовляють з різно­манітних провідникових матеріалів з використанн

Резистори
  За зонною теорією провідності до напівпровідників належать речовини, в яких ширина забороненої зони не перевищує 3 еВ, або такі, питома електропровідність яких лежить у межах від 10

Електронно-дірковий перехід і його властивості. Напівпровідникові діоди
  Розглянуті вище властивості однорідних напівпровідників використовуються лише для побудови напівпровідникових резисторів. Більшість же напівпровідникових приладів й елементів мікрое

Транзистори
Транзистором називають напівпровідниковий прилад, що має три виводи (електроди) і здатний підсилювати потужність сигналу. Назва приладу походить як словосполучення від двох англі

Електровакуумні прилади
  Найпростіший електровакуумний прилад — діод (рис. 3.22, а) має вигляд балона, тиск повітря в якому не перевищує 10–7…10–8 мм. рт. ст., де знаходя

Чотириполюсники
  Розглянуті в п. 3.5 та 3.6 активні елементи радіоелектронних кіл мають різну фізичну природу, будову і принцип дії, але в радіоелектронних пристроях вони виконують одну й ту саму фу

Транзисторів та електронних ламп
  Режим роботи транзисторів й електронних ламп забезпечується початковим положенням РТ на їхніх ВАХ, яке визначається значеннями постійних напруг на електродах за відсутності сигналу.

Напівпровідникові інтегральні мікросхеми
  Розглянуті радіодеталі – резистори, конденсатори, діоди, транзистори, електровакуумні прилади тощо – складають дискретну елементну 6азу радіоелектроніки. Кожна з цих деталей виготов

Мікроелектроніку
Підвищення рівня інтеграції мікросхем І пов'язане з ним зменшення розмірів елементів мають свої межі. Наприклад, Інтеграція більш як 10е елементів в 1 см3 кристала стає вже ек

Електронно-променеві прилади
Електронно-променевими називають електровакуумні прилади, в яких для перетворення сигналів інформації використовують потік електронів у вигляді гостро сфокусованого променя або пучка пром

Типи електричних фільтрів
  Однією з поширених операцій, що виконуються в радіоелектронних колах, є виділення певного сигналу або частини його спектра з сукуп­ності інших сигналів та завад. Для цього використо

Властивості найпростіших RС-елементів
Для виділення сигналів у найпростіших RС-фільтрах використовується залежність реактивного опору конденсатора, а разом із ним і коефіцієнта передачі чотириполюсника, від частоти. Для поліпшен

Загальна структура і типи підсилювачів
Підсилення — це найпростіший і базовий вид будь-яких перетворень електричних сигналів. Навіть у тих випадках, коли для виконання основної функції (наприклад, перетворення спектрів сигналів) досить

Каскаду
Для підсилення широкосмугових сигналів найчастіше застосовуються аперіодичні підсилювачі. Вони ж є основою для створення підсилювальних мікросхем і вибірних підсилювачів, побудованих на

Каскаду
Для підсилення широкосмугових сигналів найчастіше застосовуються аперіодичні підсилювачі. Вони ж є основою для створення підсилювальних мікросхем і вибірних підсилювачів, побудованих на

Резонансні підсилювачі
Ці підсилювачі найчастіше використовуються для виділення та підсилення радіочастотних сигналів. Це — суто вузькосмугові вибірні підсилювачі, основними параметрами яких є максимальний коефіцієнт під

Підсилювачі потужності
  Ці підсилювачі призначені для забезпечення потрібної потужності сигналу на опорі навантаження при мінімальному значенні коефіцієнта нелінійних спотворень і максимальному ККД. Підсил

Підсилювачі постійного струму й операційні підсилювачі
  Якщо миттєві значення сигналу змінюються дуже повільно, то нижня гранична частота смуги пропускання підсилювача має прямувати до нуля. З цією метою каскади підсилювачів з'єднують мі

Загальна структура і типи перетворювачів сигналів
  Перетворення електричних сигналів поряд з їх виділенням та підсиленням є однією з основних функцій радіоелектроніки. Існує два виду перетворення сигналів: логічне перетворенн

Модуляція і схеми модуляторів
Модуляція — це процес, завдяки якому з використанням допоміжного коливання спектр керувального сигналу переноситься до ділянки вищих частот із метою здійснення багатоканальної передачі інфор

Демодуляція і схеми детекторів
  За визначенням демодуляція (детектування) сигналу — це процес, зворотний його модуляції. Згідно з п. 6.1 детектування може відбуватися як у параметричних (синхронне детектува

Перетворення і множення частоти
Перетворення частоти — це лінійне перенесення спектра радіосигналу з однієї області частот в іншу, як правило, більш низькочастотну. При цьому форма обвідної модульованого сигналу та його

Логічні перетворення цифрових сигналів і базові логічні елементи
  Логічні перетворювачі електричних сигналів є основою побудови всіх цифрових схем і пристроїв. За формальними ознаками вони підпадають під узагальнену структурну схему (див. рис. 6.1

Загальна структура і типи генераторів
  Генератори електричних коливань перетворюють енергію джерела живлення на енергію змінного струму, частота якого визначається параметрами коливальної системи. Існують різні способи г

Автогенератори з коливальним контуром
  Автогенератор із коливальним контуром — це резонансний підсилювач з колом 33, побудований за трансформаторною, автотрансформаторною або ємнісною схемами. Підсилювач може бути

Підсилювачах
  Застосування автогенераторів з коливальним контуром має обмеження як при надвисоких частотах, так і при низьких. із зростанням частоти розміри коливальної системи зменшуються настіл

Генератори релаксаційних коливань
Генераторами релаксаційних коливань називають такі джерела періодичних імпульсних сигналів, в основі роботи яких лежить періодичне накопичення енергії від джерела постійного струму в ємно

Тригери
Тригером називають пристрій, що має два стійких стани рівноваги і здатний стрибком переходити з одного стану стійкої рівноваги в інший під дією зовнішнього (керувального) сигналу запуску.

Використовуваних радіочастот
  Першим технічним застосуванням радіоелектроніки було передавання інформації на відстань за допомогою електромагнітних хвиль, або радіохвиль. Для його здійснення треба, утворити кана

Радіопередавачів
Структурні схеми радіопередавачів, їхні конструкції та принципові схеми значною мірою визначаються основними технічними показниками: призначенням і місцем експлуатації; потужністю сигналу в антені

Радіоприймачів
  Усі радіоприймачі можна поділити на дві великі групи: побутові та професійні. Перші призначені для приймання програм радіомовлення і телебачення. Ними користується нас

Особливості побудови деяких елементів радіоприймачів
  Ці особливості пов'язані з широкодіапазонністю радіоприймачів як за частотою, так i за динамічністю сигналів на вході. Висока якість приймання потребує в цих умовах зберіганн

Принципи телебачення
  Сукупністъ оптичних, електронних i радіотехнічних пристроїв, за допомогою яких зображення перетворюєься на електричні сигнали, після чого вони передаються на відстань, синтезуються

Структурні схеми монохромних телевізорів
  За принципом дії телевізійні приймачі можуть бути прямого підсилення i супергетеродинні. Вони можуть бути побудовані за дво- або одноканальною схемою. Із збільшенням кількості телев

Принципи радіолокації
Радіолокація — це галузь радіоелектроніки, за допомогою якої при використанні електромагнітного випромінювання виявляють, визначають місцеположення у просторі, напрямок i швидкістъ руху (

Радіолокація неперервним сигналом
  Найперші РЛС були саме доплерівськими станціями неперервного випромінювання. Спрощену структурну схему такої станції показано на рис. 10.2. Станція складається з генератора високоча

Радіолокація імпульсним сигналом
  На рис. 10.4 зображено спрощену структурну схему імпульсної РЛС. Її роботою керує генератор синхроімпульсів ГСІ. Від його дуже коротких імпульсів у вcix блоках РЛС починається відлі

Конструктивні особливості окремих елементів РЛС
  Виявлення та визначення координат i параметрів руху об'єктів у просторі за допомогою електромагнітних хвиль — досить складна суперечлива технічна проблема, однією з основних умов ус

Оброблення цифрової інформації
Електронні обчислювальні машини (комп'ютери) — це засоби перетворення інформації, які є програмованими автоматами. Існують машини для оброблення інформації в аналоговій формі та

Апаратні засоби ЕОМ
  Будь-яка ЕОМ складається з електронних операційних пристроїв, що виконують операції, задані програмою, і генерують, транспортують та перетворюють електричні імпульси, якими позначен

Комп’ютерні мережі
З'єднання кількох комп’ютерів у систему значно розширює можливості користувачів. Для організації комп’ютерної мережі в кожному комп’ютері встановлюється спеціальна плата — мережний адаптер. У мереж

Основні типи комп’ютерів
  Практично всі типи ЕОМ побудовано за принципами і схемою, розглянутими вище. Проте залежно від конкретних сфер застосування вони різняться кількісними характеристиками, структурою а

Основні операційні елементи обчислювальної техніки
  Як зазначено при розгляді апаратних засобів обчислювальних систем, оброблення цифрової інформації полягає у виконанні елементарних операцій з електричними імпульсами, що відтворюють

Питания радіоелектроніки в курсі фізики i спецкурсах
  Вивченню питань радіоелектроніки в структурі базового курсу фізики приділяється значна увага. В шести великих розділах завершального ступеня навчання i майже десяти лабораторних роб

Радіоелектроніка у кабінеті фізики i засобах навчання
  Кабінет фізики сучасної загальноосвітньої школи досить насичений радіоелектронною апаратурою та обладнанням. Його можна поділити на такі основні групи: навчальні моделі для вивчення

Радіоелектроніка в позакласній роботі
  Через те, що радіоелектроніка оточує нас у повсякденному житті, завдяки багатьом своїм загадковим явищам та ефектам i різноманітності застосування вона викликае жвавий інтерес навит

Елементи радіоелектроніки в технічній творчості школярів
  Однією з найбільш гнучких та ефективних форм опанування теоретичних знань радіоелектроніки i набуття практичних навичок школярами є фізико-технічний гурток або факультатив, що пєедн

ТА РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ
1.Алгинин Б. Е. Кружок электронной автоматики.— М.: Просвещение, 1990. —192 с. 2.Бобровников Л. 3. Радиотехника и электроника. — М.: Недра,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги