рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Переходные процессы в механической части электропривода

Переходные процессы в механической части электропривода - раздел Образование, Основы теории элетроприводов Решим Уравнение Электропривода ...

Решим уравнение электропривода относительно дифференциала скорости: dω = ε dt ,где – ускорение масс механической части.

 

 

Рис. 2.16. Переходный процесс пуска электропривода

при экспоненциальной зависимости M(t)

 

Проинтегрируем обе части полученного равенства при заданном законе изменения движущего момента:

В результате получим (рис. 2.16)

где - начальное ускорение;

-начальный момент двигателя.

Время переходного процесса практически можно считать равным tn . n =(3÷4)T (рис. 2.16).

Рассмотрим условия движения электропривода при постоянных моментах двигателя и сопротивления, т.е. и (рис. 2.17, а). В результате интегрирования уравнения имеем

,

т. е. получим известную формулу равномерно ускоренного движения .

а в

б

Рис. 2.17. Переходные процессы электропривода в режиме равномерно ускоренного движения (а); равномерно замедленного движения (б); реверса скорости (в)

 

С помощью этого выражения можно определить время переходного процесса tn.n. изменения скорости от начального значения до конечного значения :

(2.29)

При , электропривод сохраняет состояние покоя () или равномерного движения () до тех пор, пока равенство не будет нарушено. В момент t=0 момент двигателя скачком увеличивается до значения и электропривод сразу переходит в режим равномерно ускоренного движения с ускорением . Если оставить момент двигателя неизменным, т. е. , этот режим будет длиться сколь угодно долго, а скорость неограниченно возрастать.

На практике при достижении электроприводом требуемой скорости момент двигателя снижается до значения (в момент времени ), ускорение скачком уменьшается до нуля и наступает статический установившийся режим при значениях (рис. 2.17, а).

Допустим, что система нагружена активным моментом МС, обусловленным, например, весом поднимаемого груза, и работает в установившемся режиме подъёма груза с постоянной скоростью при М= МС (рис. 2.17, б). Если в момент времени t = 0 уменьшить момент двигателя до нуля, то под действием момента МС привод станет замедляться, при этом . Скорость в соответствии с уравнением изменяется по закону:

. (2.30)

Через время торможения , скорость двигателя становится равной нулю, но активный момент сохраняет своё значение и в соответствии с законом изменения скорости двигатель начнёт ускоряться в противоположном направлении, двигаясь под действием падающего груза с возрастающей по абсолютному значению скоростью.

Так как скорость может увеличиться до опасных значений, то двигатели снабжаются механическим тормозом, который автоматически затормаживает привод после отключения от сети. В момент времени , когда достигается требуемое значение скорости , момент двигателя скачком увеличивается от 0 до М = МС и наступает статический режим работы с (рис. 2.17, б).

Рассмотрим процесс реверса электропривода при реактивном моменте МС от начальной скорости одного направления до конечной скорости противоположного знака (рис. 2.17, в). В момент времени t = 0 момент двигателя скачком изменяется от значения до значения и происходит замедление системы по закону:

(2.31)

Время торможения определяется выражением:

(2.32)

При значениях скорость двигателя под действием момента меняет свой знак, что вызывает изменение направления реактивной нагрузки МС на противоположное (-МС). Скачком уменьшается значение ускорения от значения, определяемого выражением до значения, определяемого выражением . При пуске в обратном направлении скорость изменяется следующим образом:

.

Время пуска до скорости :

(2.33)

Для перехода к статическому режиму при скорости момент двигателя должен скачком уменьшиться до значения (рис. 2.17, в).

Таким образом, при постоянстве статического момента сопротивления закон изменения скорости привода в переходных процессах определяется характером изменения во времени момента двигателя. Для экспоненциального закона необходимо обеспечить экспоненциальную зависимость момента от времени; для получения равномерно ускоренного процесса пуска необходимо формировать прямоугольный закон изменения момента от времени и т.п.

Механическая часть, представленная в виде жёсткого приведённого звена, отражает движение системы в среднем и не даёт точных представлений о характере движения упруго связанных масс электропривода. Поэтому рассмотрим на простейшем примере влияние упругих связей.

Проанализируем переходный процесс пуска электропривода с механической частью в виде двухмассовой упругой системы (рис. 2.18) при и приложении к системе скачком электромагнитного момента двигателя :

 

 

Рис. 2.18. Двухмассовая упругая система

 

Дифференциальное уравнение движения системы, решенное относительно скорости двигателя , можно получить с помощью рассмотренной выше передаточной функции (2.26):

.

 

Отсюда: .

Заменив оператор p на производную и приняв M(p)=M1, получим:

,

где – среднее ускорение системы.

Корни характеристического уравнения были определены выше:

.

Нулевой корень определяет частное решение, соответствующее равномерно ускоренному движению: (проверяется подстановкой в дифференциальное уравнение). Чисто мнимые корни определяют возможность развития незатухающих колебаний с частотой , поэтому общее решение следует искать в виде:

.

Для нахождения коэффициентов A и Bнеобходимо использовать начальные условия: при t=0, .

Подставив эти значения в общее решение, получим:

;.

Следовательно,

. (2.34)

В соответствии с уравнениями движения двухмассовой системы:

 

Уравнение движения первой массы:

(т.к. ).

Продифференцировав его по времени, запишем относительно скорости (М1=const):

(2.35)

Подставив полученные выше выражения для , получим:

(2.36)

Характер полученных зависимостей ω1(t) и ω2(t) при γ<2 показан на рис. 2.19, а, б.

 

а б

Рис. 2.19. Пуск электропривода с двухмассовой упругой механической частью при моменте двигателя B без учета (а) и с учетом (б) естественного демпфирования

содержат колебательные составляющие, причём колебания ω1 и ω2 совершаются в противофазе. Из выражения для ω2 следует, что производная скорости второй массы dω2/dt всегда положительна,

,

а для принятого значения γ < 2 и dω1/d t >0.

При прочих равных условиях колебания скорости ω1 тем меньше, чем меньше J2, а увеличение Ω12 при тех же ускорениях εср снижает амплитуды колебаний скорости обеих масс.

В реальной системе всегда имеются диссипативные силы типа вязкого внутреннего трения, поэтому колебательная составляющая скоростей с течением времени затухает.

Однако естественное затухание не велико () и за время затухания совершается 10÷30 колебаний (рис. 2.19, б, ). Даже при наибольших значениях естественное демпфирование незначительно сказывается на характере переходных процессов.

 

– Конец работы –

Эта тема принадлежит разделу:

Основы теории элетроприводов

Уфимский государственный авиационный технический университет... Н Г Уразбахтина Основы теории элетроприводов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Переходные процессы в механической части электропривода

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Уразбахтина Н. Г.
У Основы теории электроприводов летательных аппаратов: учеб. пособие / Н. Г. Уразбахтина – Уфа: УГАТУ, 2012.– 114с.   ISBN   Рассматриваются &

ЭЛЕКТРОПРИВОД ЛЕТАТЕЛЬНЫХ АППАРАТОВ
  В общем случае электрический привод (ЭП) представляет собой электромеханическую систему (рис. 1.1), в состав которой входят устройства, обес­печивающие следующие виды преобразований

Высокая точность отработки механического движения, статическая и динамическая устойчивость.
Кроме вращательного или поступательного движения выходного вала электропривод ЛА должен обеспечивать: 1) требуемый электромагнитный момент в заданном диапазоне изменения частоты вращения;

Быстродействие и высокое качество переходных процессов.
Под этим требованием, отражающим динамические качества электропривода, понимают его способность достаточно быстро реагировать на различные управляющие и возмущающие воздействия. Требование по быстр

Механика электропривода
  Современный электропривод является индивидуальным автоматизированным электроприводом. Он включает в себя систему автоматического управления (САУ), которая в простейшем случае осущес

Типовые статические нагрузки электропривода
Кроме электромагнитного момента на механическую часть электропривода действуют статические нагрузки, которые делятся на силы и моменты механических потерь и силы и моменты полезных нагрузок исполни

Уравнения движения электропривода
Механическая часть электропривода представляет собой систему твёрдых тел, движение которых определяется механическими связями между телами. Если заданы соотношения между скоростями отдельных элемен

Динамические нагрузки электропривода
  Правые части полученных выше уравнений движения электропривода представляют собой моменты инерции действующих сил в системе. В теории электропривода эти силы и моменты принято назыв

Обобщенная электрическая машина
  Электродвигатель может быть представлен в виде электромеханического многополюсника (рис. 3.1):  

Линейные преобразования обобщенной машины
  Произведём линейные преобразования уравнений обобщённой электрической машины для устранения зависимости индуктивностей и взаимных индуктивностей обмоток двигателя от угла поворота р

Механические характеристики обобщенной машины
  Математическое описание механических характеристик в осях u, v имеет вид: (3.7) Если ось

Математическое описание процессов электромеханического преобразования в асинхронном двигателе
Двухфазную модель трехфазной асинхронной машины можно представить в виде (рис. 4.1)  

Статические характеристики асинхронного электромеханического преобразователя при питании от источника тока
Преобразователь частоты, используемый в регулируемом электроприводе, может работать в двух режимах: источника напряжения и источника тока. В последнем случае в фазах электродвигателя формируются то

Режим динамического торможения асинхронного двигателя
В современном асинхронном электродвигателе для осуществления динамического торможения двигатель отключается от сети переменного тока и включается по схеме рис.4.6, a:  

Динамические свойства асинхронного двигателя
Как было показано ранее, при питании асинхронного двигателя от источника напряжения наиболее эффективные возможности управления обеспечиваются использованием в качестве управляющего воздействия в к

Электромеханическое преобразование в синхронном двигателе
Рассмотрим электромеханические свойства синхронных двигателей. Схема включения его изображена на рис. 5.1, a.  

Угловая характеристика синхронного двигателя
  Уравнения механической характеристики нелинейны в связи с наличием произведения переменных. Приближенное уравнение механической характеристики двигателя может быть найдено с помощью

Динамические свойства синхронного двигателя
При идеальном холстом ходе I1q = 0 и вектор Ψ1 (рис. 5.1, в) совпадает с осью d (θэл = 0). Под нагрузкой ось ротора d и

Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
Необходимым условием процесса преобразования энергии является протекание переменных токов хотя бы по части обмоток машины. В двигателе постоянного тока это условие выполняется работой коллектора, к

Механическая характеристика двигателя постоянного тока с независимым возбуждением
Уравнения электромеханической характеристики в осях α, β имеют вид: ,

Динамические свойства двигателя постоянного тока с независимым возбуждением
Для анализа динамических характеристик машины постоянного тока в системе уравнений, описывающих механические характеристики двигателя, произведем подстановку:

Обобщенная электромеханическая система с линеаризованной механической характеристикой
  Из теории автоматического управления известно, что динамические свойства замкнутых систем определяются свойствами разомкнутой системы, ее передаточными функциями и частотными характ

Динамические свойства электропривода с линейной механической характеристикой
  Для анализа свойств электропривода с линейной механической характеристикой как объекта автоматического управления найдем передаточную функцию системы по управляющему воздействию:

Динамика электропривода с синхронным двигателем
  Так как динамические свойства синхронной машины в значительной степени отличаются от характеристики обобщенной электромеханической системы, то необходимо отдельно рассмотреть динами

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги