рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция 14.

Лекция 14. - раздел Образование, Лекция 1. Основные понятия и определения §6.5 Синтез (Проектирование) Кулачковых Ме...

§6.5 Синтез (проектирование) кулачковых механизмов по заданному закону движения толкателя.

 

Под синтезом кулачкового механизма будем понимать построение профиля кулачка, в каждой точке которого угол давления не превышал бы допустимого, а размеры самого профиля были бы минимальны.

Данная задача решается в 3 этапа:

1. Строится график заданного закона движения (как правило либо график ускорения точки В толкателя как функция угла положения – aB = f(φ1), либо график линейной скорости точки В – vB= f(φ1)). Требуется построить график перемещения точки В как функцию от угла поворота кулачка sB= f(φ1).

2. Определение минимального размера кулачковой шайбы при условии, что угол давления в любой точке профиля не превышает допустимого.

3. Построение профиля кулачка.

6.5.1 Построение закона движения оси толкателя.

Дано: Надо построить:

вид графика aB = f(φ1), графики aB = f(φ1)

максимальный ход vB= f(φ1)

толкателя hт sB= f(φ1)

 
 

b – база графика (сколько отводиться на график по оси φ1­).

 

 

Порядок построения:

1. Произвольно выбирается база графика.

2. Считаем масштаб по оси φ1:

, мм/град

3. Если задан симметричный вид графика, то:

φуд = φсб à bуд = bсб

В общем случае закон движения может быть несимметричным.

4. Зададимся произвольным образом а1= 40 ÷ 50 мм. Тогда

а2= а1

Возникает вопрос: каким должно быть расстояние х ?

Его находят из условия равенства площадей под и над осью φ1.

Почему надо выдерживать равенство площадей?

Физический смысл площади под кривой ускорения на площадке х – скорость толкателя на данном участке.

Физический смысл площади под кривой скорости на участке φуд – максимальное удаление (перемещение т.В толкателя). Если площади не будут равновеликими, то толкатель, поднявшись на одну величину, опустится на другую.

Построив график ускорения, строим график скорости методом графического интегрирования, выбрав отрезок интегрирования ОК1. Интегрируя график скорости (с отрезком интегрирования ОК2, обычно ОК1=ОК2), получаем график перемещения т.В толкателя. Полученную ломаную линию заменяют плавной кривой.

Расчет масштаба:

(уSВ)max на графике перемещений получается автоматически, и его величина зависит от отрезка ОК2. Тогда, зная ход толкателя, масштаб перемещения будет:

μ=

Затем в первом приближении принимаем, что кулачок вращается равномерно, тогда угол поворота кулачка пропорционален времени поворота, и оси φ и t совпадают, но каждая ось имеет свой масштаб.

где b – в [мм]; частота вращения кулачка n – [об/мин]; φраб – [град].

 

Масштаб скорости:

Масштаб ускорения:

 

6.5.2 Определение минимального радиуса кулачковой шайбы по известному закону движения толкателя.

 

6.5.2 а) для кулачка с поступательно движущимся толкателем:

Дано: sB=f(φ1); vB= f(φ1); [θ]

Определить: ro min

при условии, что угол давления в любой точке профиля кулачка не превышает допустимый.

Порядок построения графика кинематических отношений:

1. проводится вертикальная ось sB,мм вдоль которой от произвольно выбранной точки Во (начало отсчета) откладываются отрезки перемещения т.В, взятые с графика sB=f(φ1). Масштаб по оси μs* перемещений может быть равен масштабу графика перемещений μs.

2. в каждой из полученных точек определяют отрезки кинематических отношений, посчитанные в масштабе μs*, и откладывают их под углом в 90º по направлению вращения кулачка.

мм

Там, где отрезок имеет максимальное значение, восстанавливается перпендикуляр, и под углом [θ] проводится луч.

3. Если учитывать реверс, то второй луч проводят под углом [θ] через отрезок кинематических отношений, отложенный под углом в 90º по направлению реверса и имеющий максимальное значение.

Если реверс не учитывать, второй луч проводят через т.Во под углом [θ]. Если допускается внеосность, то она будет равна е1*. Если внеосность равна нулю, то центр кулачка будет в т.О1:

ro = O1Bo

Если внеосность задана в техническом задании, например левая, то проводят прямую, параллельную прямой О1Во и отстоящая от нее на расстоянии, равном величине внеосности е1, с учетом масштаба μs*. В итоге получают точку О1**.

6.5.2 б) для кулачка с качающимся толкателем:

Порядок построения: В произвольном месте выбирается точка Со, из которой радиусом, равным длине толкателя, проводят дугу окружности. По хордам откладывают перемещения т.В. Полученные точки последовательно соединяют с т.Со.

1. На этих прямых и на их продолжении откладываются отрезки кинематических отношений, посчитанные в масштабе μs* по вышеприведенной формуле. Там, где отрезок имеет максимальное значение, восстанавливается перпендикуляр, и под углом [θ] проводится луч.

 

2. Если учитывать реверс, то второй луч проводят под углом [θ] через отрезок кинематических отношений, отложенный под углом в 90º по направлению реверса и имеющий максимальное значение. Центр кулачка будет в т.О1*:

ro = O1Bo

Если реверс не учитывать, то второй луч проводят через т.Во под углом [θ]. Центр кулачка будет в т.О1*:

ro = O1*Bo

 

– Конец работы –

Эта тема принадлежит разделу:

Лекция 1. Основные понятия и определения

Основные понятия и определения... Теория механизмов и машин занимается исследованием и разработкой высокопроизводительных механизмов и машин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция 14.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 2.
Глава 1. Анализ рычажных механизмов.   В данной главе будут рассмотрены вопросы: 1. структурный анализ механи

Лекция 3.
Продифференцируем (3) по обобщенной координате:

Лекция 4.
     

Функция отношение
  Вместо силы – момент

Const var
В соответствии с определением производной проведем касательную к кривой в точке i и определим тангенс угла наклона этой касательно

Const var
  Для того чтобы удерживать колебания угловой скорости wм в заданных пределах, определяемых коэффициентом неравномерности d, первая группа звеньев должна иметь

ЛЕКЦИЯ 6.
2.8.3 Краткие сведения по определению КПД (h) машинного агрегата. КПД машинного агрега

ЛЕКЦИЯ 7.
3.2.1 Статическая неуравновешанность ротора и способы ее устранения. Статическая неуравновешанность характеризуется тем, что глав

ЛЕКЦИЯ 9.
4.5.1 Основные расчетные зависимости для определения основных параметров эвольвентных зубчатых передач.   1. Определение угла зацепл

Коэффициент перекрытия ea.
Характеризует плавность работы зубчатой передачи и показывает, какое число зубьев одновременно участвуют в перекрытии зацепления (насколько одна пара зубьев перекрывает работу другой). Тео

Коэффициент удельного скольжения l.
Характеризует износостойкость зубчатой передачи в высшей КП.     4.5.3 Определение коэффициента перекрытия графическим способом.

ЛЕКЦИЯ 10.
zmin – минимальное количество зубьев нулевого зубчатого колеса, которое можно нарезать без подреза.

Лекция 11.
  5.2.2 Планетарный механизм со смешанным зацеплением (с одним внешним и одним внутренним зацеплением).  

Аналитический способ.
u(4)1–Н = 1 – u(Н)1–4

Лекция 12.
  Получим условие соседства.   Условие соседства: окружности вершин соседних сателлитов не касаются дру

Лекция 13.
§6.2 Основные параметры кулачковых механизмов. В процессе работы толкатель совершает в

Лекция 15.
6.5.3 Построение профиля кулачка.   а) с поступательно движущимся толкателем (рис. 6.5.3.а): Дано: ro min, внеосность левая е, φ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги