рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Особенности обмена глюкозы в клетках опухoли.

Особенности обмена глюкозы в клетках опухoли. - раздел Образование, Структура, свойства и функции белков В Клетках Опухоли Отмечается Повышенная Активность Гексокиназы, Что Приводит ...

В клетках опухоли отмечается повышенная активность гексокиназы, что приводит к быстрому поглощению и окислению глюкозы. Опухолевая клетка является насосом, который выкачивает глюкозу из кровотока. В условиях быстро растущей опухоли система кровеносных сосудов отстает от роста опухоли и в таких клетках протекает анаэробный гликолиз, который и дает энергию для роста клеток. Выход энергии при анаэробном гликолизе составляет 2 моль АТФ и поэтому процесс должен идти с большой скоростью, чтобы обеспечить клетки опухоли энергией. Вследствие быстрого окисления глюкозы возникает гипогликемия. Возникновение гипогликемии вызывает ускорение глюконеогенеза и глюкоза начинает синтезироваться из аминокислот. Следствием синтеза глюкозы из аминокислот является падение веса у больных и развивается раковая кахексия.

1. Мембранная гексокиназа – работает как насос.

2. Гипогликемия.

3. Анаэробный гликолиз.

4. «Принудительный» глюконеогенез.

5. Раковая кахексия.

Гликогенозы.

Гликогенозы – наследственные заболевания, характеризующиеся избыточным отложением гликогена.

Виды гликогенозов  
Печеночные Мышечные
  Смешанные

Гликогеноз I типа (болезнь Гирке) характеризуется дефектом фермента глюкозо-6-фосфатазы.

Признаки гликогеноза: низкий уровень глюкозы натощак в крови, в тяжелых случаях судороги, замедление роста в результате подавления выработки инсулина. Накопление гликогена из-за большого количества глюкозо-6-фосфата и активации гликогенсинтетазы. Увеличение печени, гибель гепатоцитов, низкий рост, ацидоз (лактат, пирват).

Гликогеноз VI типа (болезнь Херса).

Дефект фосфорилазы. Накопление гликогена, характерны симптомы I типа, но менее выражены (глюкоза в кровь поступает).

Мышечные гликогенозы

Гликогеноз V типа – дефект или отсутствие фосфорилазы в мышцах. Мышечные судороги при физической нагрузке, мышечноя слабость, отсутствие гипогликемии. Синтез АТФ увеличивается за счет окисления жирных кислот.

Гликогеноз VII типа – дефект только фосфофруктосинтетазы. Переносят только умеренные физические нагрузки. Развивается гемолитическая анемия.

Гликогеноз III типа (болезнь Кори) – дефект или отсутствие гликоген-6-глконогидролазы. Увеличение содержания гликогена в печени. Гликоген состоит из коротких цепей.

Гликогеноз IV (болезнь Андерсона) – недостаток «ветвящего» фермента. Накопление гликогена с аномально длинными цепями. Развивается цирроз печени.

Агликогеноз – дефект гликогенсинтетазы. Отсутствие гликогена или его очень мало, судороги, гипогликемия.

 

Гемолитические анемии.

 

Гликолиз в эритроцитах и транспорт кислорода связаны участием в обеих процессах 2,3-дифосфоглицерата. 2,3-дифосфоглицерат снижает сродство гемоглобина к кислороду и облегчает освобождение О2 в тканях.

1. При дефекте гексокиназы снижается концентрация промежуточных продуктов гликолиза, в том числе снижается концентрация 2,3-дифосфоглицерата. В таких эритроцитах гемоглобин обладает очень высоким сродством с О2. Наступает гемолиз эритроцитов, когда гемоглобин плохо обдает О2.

2. При дефекте пируваткиназы нарушается энергетический обмен и мембрана не получает энергию, необходимую для ионного обмена и наряду с этим образуется избыток 2,3-дифосфоглицерата и связь с О2 становится слабой, сродство гемоглобина к О2 становится низким.

Глю Глю-6-фФру-6-фФру-1,6-дф3ФГА

1,3-ДФГК3-ФГК2-ФГКФЭППирЛак

2,3-ДФГК

2,3-ДФГК снижает сродство Hb к О2

Недостаточность глюкозо-6-фосфотдегидрогеназы – причина лекарственной гемолитической анемии.

У ряда больных малярией применение противомалярийного препарата памахина сопровождается гемолитической анемией. Через 30 лет после начала применения препарата была выяснена причина анемии. Было установлено, что возникновение анемии связано с недостаточностью глюкозо-6-фосфатдегидрогеназы в эритроцитах. В результате недостаточности фермента нарушается образование НАДФН в пентозофосфатном пути. Главная роль НАДФН в эритроцитах состоит в восстановлении дисульфидной формы глутатиона в сульфгидрильную форму.

Г-S-S-Г + НАДФН + Н+ Г-SH +НАДФ+

Восстановленная форма глутатиона обеспечивает обезвреживание перекиси и органических перекисей:

2 Г-SH + R-O-OHГ-S-S-Г + Н2О + ROH

Клетки со сниженным содержанием восстановленного глутатиона обладают повышенной чувствительностью к гемолизу. Возможно, что в отсутствие восстановленного глутатиона памахин и ряд других лекарственных препаратов, вызывают изменения поверхности мембраны эритроцитов за счет образования токсических перекисей.

Недостаточность глюкозо-6-фосфатдегидрогеназы в эритроцитах, по-видимому, обуславливает устойчивость к тропической малярии, т.к. для роста возбудителя необходим нормально функционирующий пентозный путь и восстановленный глутатион. Дефект фермента распространен в тех странах, где распространена малярия. Такая наследуемая недостаточность фермента может быть относительно безвредной, до тех пор, пока не вводятся определенные лекарства.

 

 

Особенности обмена углеводов в различных органах и тканях.

1. Обмен углеводов в печени.

Одной из важнейших функций печени в процессах обмена веществ является ее участие в поддержании постоянного уровня глюкозы в крови (глюкостатическая функция): глюкоза, поступающая в избытке, превращается в резервную форму, которая используется в период, когда пища поступает в ограниченном количестве.

Энергетические потребности самой печени, как и других тканей организма, удовлетворяется за счет внутриклеточного катаболизма поступающей глюкозы. В печени катаболизм глюкозы представлен 2 процессами: 1) гликолитический путь превращения 1 моль глюкозы в 2 моль лактата с образованием 2 моль АТФ и 2) фосфоглюконатный путь превращения 1 моль глюкозы в 6 моль СО2 с образованием 12 моль НАДФ.Н. Оба процесса протекают в анаэробных условиях, обе ферментативные системы содержатся в растворимой части цитоплазмы, оба пути требуют предварительного фосфорилирования глюкозы.

Гликолиз обеспечивает энергией клеточные реакции фосфорилирования, синтез белка; пентозофосфатный путь служит источником энергии восстановления для синтеза жирных кислот, стероидов.

При аэробных условиях происходит сочетание гликолиза, протекающего в цитоплазме и цикла лимонной кислоты с окислительным фосфорилированием в митохондриях достигается максимальноый выход энергии в 38 АТФ на 1 моль глюкозы. Фосфотриозы, образующиеся в процессе гликолиза, могут быть использованы для синтеза -глицерофосфата, необходимого для синтеза жиров. Пируват, который образуется при гликолизе, может быть использован для синтеза аланина, аспартата и других соединений, через стадию образования оксалоацетата. В печени реакции гликолиза могут протекать в обратном направлении и тогда происходит синтез глюкозы путем глюконеогенеза. В пентозофосфотном пути образуются пентозы, необходимые для синтеза НК. В отличие от гликолиза фосфоглюконатный путь необратим и здесь окисляется 1/3 глюкозы, 2/3 глюкозы окисляются по гликолитическому пути.

В печени протекают гликогенез и гликогенолиз. Эти процессы взаимосвязаны и регулируются как внутри – так и внеклеточными соотношениями между поступлением и потреблением глюкозы.

 

– Конец работы –

Эта тема принадлежит разделу:

Структура, свойства и функции белков

Выяснение структуры белков является одной из главных проблем современной биохимии... Белковые молекулы представляют собой высокомолекулярные соединения... Большинство белков имеют уровня организации структуры белковой молекулы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Особенности обмена глюкозы в клетках опухoли.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Анализ уравнения Михаэлиса-Ментен.
1. Концентрация субстрата мала, стремится к нулю. При этих условиях [S] можно пренебречь: [S]0, при этом [S] можно пренебречь:

Зависимость скорости ферментативной реакции от температуры.
При t=36-380 ферменты обладают наибольшей активностью. Эта температура называется температурный оптимум: С повышением t0 до оптимума активность ферментов повышается.

Аллостерическая модификация.
Этот вид активации характерен для ключевых обменных процессов:

Пентозофосфатный (апотамический) путь окисления глюкозы.
Большая часть глюкозы расщепляется в тканях по гликолитическому пути с образованием пирувата. В свою очередь большая часть пирувата окисляется через цикл лимонной кислоты. Главный смысл расщепления

Взаимосвязь пентозного пути и гликолиза.
Обмен гликогена. Глюкоза как моносахарид свободно диффундирует через мембрану печеночных клеток, она не может служить рез

Глукогенные аминокислоты
Превращаются в пир: ала, сер, цис, гли Превращаются в оксалоацетат: асп, асн Превращаются в сукцинил-КоА: вал, тре, мет Превращаются в

Алкоголь тормозит глюконеогенез.
Потребление больших количеств алкоголя резко тормозит глюконеогенез в печени, вследствие чего понижается содержание глю в крови, т.е. возникает гипогликемия. Это особенно сказывается после тяжелой

Патология обмена углеводов.
Нарушения обмена глюкозы проявляются в виде гипергликемии, глюкозурии и гипогликемии. Особую форму представляют нарушениями энергетического обмена при гипоксических состояниях. Гипергликем

Метод сахарной нагрузки.
У больного берут кровь натощак, затем дают выпить сироп, содержащий 50г глюкозы в 200-250 мл воды. Далее через 30, 60, 150’ берут кровь и проводят определение глюкозы. У здорового человека (1) исхо

Обмен углеводов в мышцах.
Печень учитывает запросы других органов и тканей в отношении углеводного обмена. В мышцах углеводный обмен происходит в соответствии с принципом самообслуживания. Цель мышечной клетки – на

Обмен углеводов в мозге.
По сравнению со всеми органами тела функций мозга в наибольшей степени зависит от обмена углеводов. Если в крови, поступающей к мозгу, концентрация глюкозы становится вдвое ниже нормальной, то в те

Обмен углеводов в эритроцитах.
Эритроциты не содержат ядра, митохондрий. В эритроците не идут реакции цикла лимонной кислоты, в них нет ферментов дыхательной цепи. Парадоксальным является тот факт, что эритроцит, перенося кислор

Обмен углеводов в эритроцитах.
  Регуляция обмена углеводов.   Соотношение между процессами катаболизма и анаболизма

Механизм действия инсулина
1. Повышает проницаемость клеточных мембран для глюкозы, способствуя переходу ее из крови в ткани; 2. задерживает глюкозу в клетках, активируя гексокиназу («гексокиназная ловушка глюкозы»)

Механизм действия глюкокортикоидов.
Усиливают глюкогенез за счет индукции синтеза в клетках печени ключевых ферментов глюкогенеза – фосфоенолпируват-карбоксилазы, пируваткарбоксилазы, фруктозо-1,6-дифосфотазы, глюкозо-6-фосфотазы.

Производные липидов
Стериды – производные высокомолекулярных полициклических ненасыщенных спиртов. Представителем стеридов является холестерин и холестериды.

Переваривание и всасывание липидов
В полости рта жиры не подвергаются расщеплению, так как слюна не содержит ферментов, расщепляющих жиры. У взрослых людей жиры проходят через желудок без изменений, так как липаза желудочного сока м

Ресинтез жиров в стенке кишечника
В стенке кишечника синтезируются жиры специфичные для организма и отличающиеся по строению от пищевого жира. Механизм ресинтеза тригицеридов в клетках кишечника сводится к следующему: перв

Внутриклеточный липолиз
Главным эндогенным источником жирных кислот служит резервный жир, содержащийся в жировой ткани. Так как в качестве источников энергии могут использоваться только свободные жирные кислоты,

Расчет выхода энергии при окислении жирной кислоты
1. Подсчет количества молекул Ацетил-КоА, образовавшихся при окислении жирной кислоты:

Окисление ненасыщенных жирных кислот
Окисление ненасыщенных жирных кислот в принципе происходит так же, как и окисление насыщенных жирных кислот. Однако здесь имеются некоторые особенности. Двойные связи природных ненасыщенных жирных

Переваривание и всасывание
Холестерин в организме человека бывает 2 видов: 1) холестерин, поступающий с пищей через ЖКТ и называемый экзогенный и 2) холестерин, синтезируемый из Ац – КоА - эндогенный. С пищей ежедне

Биосинтез холестерина
Клетки печени синтезируют 80% всего холестерина, примерно 10% холестерина синтезируется в слизистой кишечника. Холестерин синтезируется не т

Судьба холестерина в клетке
1. Связывание ЛНП с рецепторами фибробластов, гепатоцитов и др. клеток. На поверхности 1 фибробласта содержится 7500 – 15000 рецепторов, чувствительных к холестерину. Рецепторы для ЛНП содержат энд

Превращение холестерина в организме
То внимание, которое ранее уделяли метаболизму холестерина при обсуждении его роли в организме явно преувеличено. На первое место в настоящее время выдвинута структурная роль холестерина в биомембр

Эстерификация холестерина
Повышает неполярность молекулы. Этот процесс происходит как вне так и внутриклеточно, он всегда направлен на то, чтобы убрать молекулы холестерина с границы раздела липид / вода вглубь липопротеидн

Окисление холестерина.
  Единственным процессом, необратимо удаляющим холестерин из мембран и ЛП является окисление. Оксигеназные системы обнаружены в гепатоцитах и клетках органов, синтезирующих стероидные

Моноокисдазная система.
  Содержит цитохром Р450 способный активировать молекулярный кислород (при участии НАДФН) и использует один из его атомов для окисления органических веществ, а второй для о

Метаболизм кетоновых тел.
Ацетил-КоА, образовавшийся при окислении жирных кислот, сгорает в цикле Кребса или используется для синтеза кетоновых тел. К кетоновым телам относятся: ацетоацетат,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги