рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основы гидродинамического подобия

Основы гидродинамического подобия - раздел Педагогика, Предмет гидравлики · Гидравлика жидкостных ракетных двигателей В Науке Существуют Два Основных Метода Исследования: Аналитический...

В науке существуют два основных метода исследования: аналитический, основанный на законах механики и физики, и экспериментальный.

Ранее отмечалось, что аналитическое решение дифференциальных уравнений, описывающих движение жидкости, возможно лишь для сравнительно небольшого числа упрощенных моделей и явлений. Поэтому для решения большинства сложных инженерных задач в механике жидкости прибегают к экспериментальным исследованиям. Экспериментальные исследования проводятся в лабораториях на моделях, которые выполняются, как правило, в меньшем масштабе, по сравнению с натурными объектами. При этом моделирование изучаемых процессов должно быть научно обосновано.

Исследования на моделях приводят к значительной экономии средств, позволяют уточнять формулы, полученные теоретическим путем, и устанавливать эмпирические зависимости между параметрами изучаемого явления.

В гидравлике множество исследовательских задач позволяет решать теория гидродинамического подобия, т.е. подобия потоков несжимаемой жидкости.

Гидродинамическое подобие складывается из трёх составляющих: геометрического подобия, кинематического и динамического.

1. Геометрическое подобие -представляет собой пропорциональность сходственных размеров и равенство соответствующих углов:

, (3.37)

где - линейные размеры натурного потока и модели;

- коэффициент пропорциональности или линейный масштаб модели. Эта величина одинакова (idem) для подобных потоков.

В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т.е. подобие каналов. К их числу относятся также участки, расположенные непосредственно перед и за рассматриваемым участком, т.к. они оказывают существенное влияние на характер исследуемых явлений.

Из формулы (3.37) следует, что является условием подобия соответствующих площадей, а - объёмов.

Однако геометрическое подобие является необходимым, но недостаточным условием для адекватного отражения работы натурного объекта и модели.

2. Кинематическое подобие - означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей:

, (3.38)

где - скорость натурного потока и модели;

— масштаб скоростей, одинаковый при кинематическом подобии.

Так как , то (где Т - время, - масштаб времени).

Из кинематического подобия потоков следует геометрическое подобие линий тока.

В теории подобия доказывается, что кинематическое подобие потоков (скорости, ускорения, перемещения частиц в модели будут соответственно в одних и тех же отношениях уменьшены по сравнению с натурой) имеет место только при соблюдении геометрического и динамического подобия.

Динамическое подобие - это пропорциональность сил, вызывающих рассматриваемое движение в модели, по сравнению с аналогичными силами в натуре.

В потоках жидкостей обычно действуют разные силы: силы дав­ления, вязкости (трения), тяжести и др. Соблюдение их пропорцио­нальности означает полное гидродинамическое подобие. Осуще­ствление на практике полного гидродинамического подобия оказы­вается весьма затруднительным, поэтому обычно имеют дело с ча­стичным (неполным) подобием, при котором соблюдается пропор­циональность лишь основных, главных сил.

Для напорных течений, т.е. для потоков в трубах, в гидромашинах и тому подобных, такими силами, как показывает анализ, являются силы давления, вязкости и силы инер­ции. На жидкость действует также сила тяжести, но в напорных потоках ее действие проявляется через давление, т.е. оно сводится к соответствующему изменению давления. Поэтому, рассматривая так называемое приведенное давление , тем самым учитываем силу тяжести.

Силы инерции определяются произведением массы на ускорение, т.е. , а их отношение в подобных потоках равно масштабу сил:

, (3.39)

где - силы инерции в натурном потоке и модели;

- масштаб плотностей.

Таким образом, силы инерции пропорциональны плотности, ско­рости во второй степени и размеру L во второй степени, который, в свою очередь, пропорционален площади S:

.

Заметим, что этому же произведению пропорциональны силы, с которыми поток воздействует (или способен воздействовать) на преграды (см. п. 3.6), лопасти гидромашин и обтекаемые тела.

Примем силы инерции за основу и будем другие силы, действую­щие на жидкость, сравнивать с инерционными, т.е. с выражением .

Таким образом, для гидродинамически подобных потоков в натуре (н) и модели (м) имеем

(число Ньютона). (3.40)

Это отношение, одинаковое для подобных потоков, называют числом Ньютона и обозначают . Здесь под подразумевается основная сила: сила давления, вязкости, тяжести или др.Следова­тельно, соотношение (3.40) представляет собой общий вид закона гидродинамического подобия.

Рассмотрим три характерных случая воздействия на движущуюся жидкость основных сил и найдем усло­вия подобия потоков.

1. На жидкость действуют лишь силы давления и инерции. Тогда и условие (3.40) примет вид

(число Эйлера), (3.41)

где - некоторая разность давлений (или просто давление);

- безраз­мерный критерий, называемый числом Эйлера.

Следовательно, условием гидродинамического подобия геомет­рически подобных потоков в данном случае является равенство для них чисел Эйлера.

Из предыдущего ясен физический смысл числа Эйлера: это есть величина, пропорциональная отношению сил давления к силам инерции.

2. На жидкость действуют силы вязкости, давления и инерции. Тогда

 

и условие (3.40) после деления последнего выражения на при­мет вид

, или

(число Рейнольдса), (3.42)

где Re — безразмерный критерий, называемый числом Рейнольдса.

Отступление. 0. Рейнольдс (1842—1912 гг.) - известный английский физик и инженер. Помимо установления важнейшего критерия, названного его именем, исследовал ряд других вопросов гидравлики с позиций инженера: режимы те­чения жидкости, теорию наиболее сложного турбулентного режима течения, теорию смазки, течение с парообразованием (кавитацию) и др.

Следовательно, условием гидродинамического подобия геомет­рически подобных потоков в рассматриваемом случае является ра­венство чисел Рейнольдса, подсчитанных для сходственных сечений потоков.

Последнее условие является особенно важным, так как им устанавливается основной критерий подобия напорных потоков - число Рейнольдса. За характерный размер L при под­счете числа Рейнольдса должен приниматься поперечный размер потока, например, диаметр сечения.

Из предыдущего ясен физический смысл числа Рейнольдса: это есть величина, пропорциональная отношению сил вязкости к силам инерции.

3. На жидкость действуют силы тяжести, давления и инерции. Тогда и условие (3.40) принимает вид

 

или

 

(число Фруда), (3.43)

 

где - безразмерный критерий, называемый числом Фруда.

Следовательно, условием гидродинамического подобия геометри­чески подобных потоков в данном случае является равенство чисел Фруда. Из предыдущего яс­но, что число Фруда — это величина, пропорциональная отношению сил инерции к силам тяжести. Критерий Фруда являет­ся важным при рассмотре­нии безнапорных течений в открытых руслах, для на­порных течений его можно не учитывать.

Для установления связи между гидродинамическим подобием и основным уравнением гидравлики - уравнением Бернулли - рассмотрим два напорных потока I и II, которые подобны друг другу гидродинамически, и отметим на них сходственные сечения 1-1 и 2-2 (рис. 3.17).

Рис. 3.17. Подобные потоки

 

Запишем уравнение Бернулли для указанных сечений одного из потоков в предположении, что жидкость идеальная. Это будет соответствовать первому из рассмотренных выше случаев движения, так как на жидкость, можно считать, будут действовать лишь силы давления и инерции. Будем иметь

,

где и — приведенные давления.

Используя уравнение расхода

,

исключим скорость и, перегруппировав члены уравнения, приведем его к безразмер­ному виду. Для этого разделим уравнение на , после чего получим

. (3.44)

Правая часть уравнения (3.44) одинакова для подобных пото­ков вследствие геометрического подобия, а левая часть, представ­ляющая собой удвоенное число Эйлера , одинакова вследствие динамического подобия, и всё уравнение (3.44) одинаково для по­добных потоков идеальной жидкости. Таким образом, для обеспе­чения гидродинамического подобиянапорных потоков идеальной жидкости достаточно одного геометрического подобия.

Теперь запишем уравнение Бернулли для тех же сечений 1-1 и 2-2 одного из напорных потоков вязкой жидкости, подобных гидродинамически. Будем иметь

,

где - коэффициент потерь энергии между рассматриваемыми сечениями.

После приведения этого уравнения к безразмерному виду подобно предыдущему получим

. (3.45)

Число одинаково для рассматриваемых подобных потоков вследствие их динамического подобия; коэффициенты Кориолиса и одинаковы из-за кинематического подобия, следовательно, одинаковым будет и коэффициент потерь , а также все уравнение.

Если же рассматривать подобные потоки в трубах постоянного сечения, то одинаковым будет коэффициент потерь на трение по длине - .

Итак, в подобных напорных потоках имеем равенство безразмер­ных коэффициентов и чисел и некоторых других, которые будут введены в рассмотрение ниже.

Изменение числа означает, что изменяется соотношение основных сил в потоке, в связи с чем указанные коэффициенты могут также несколько изме­ниться. Поэтому все коэффициенты следует рассматривать как функ­ции основного и определяющего критерия для напорных потоков вязкой жидкости — числа Рейнольдса - (хотя в некоторых интер­валах числа эти коэффициенты могут оставаться постоянными).

При экспериментальных исследованиях и моделировании напор­ных течений в лабораторных условиях необходимо, во-первых, обес­печить геометрическое подобие модели (II) и натуры (I), включая условия входа и выхода, и, во-вторых, соблюсти равенство чисел Рейнольдса: . Из второго условия получаем необходимую скорость потока при эксперименте

.

В частном случае, при скорость при эксперименте должна быть больше натурной в раз. Применяя менее вязкую жид­кость (или ту же жидкость, но при повышенной температуре) можно снизить скорость .

Помимо перечисленных основных критериев подобия (Eu, Re, Fr), в гидравлике применяют и другие критерии для особых случаев течения жидкости. Так, при рассмотрении течений, связанных с по­верхностным натяжением (например, при распаде струи на капли, распыливании топлива в двигателях), вводят критерий Вебера (We), равный отношению сил поверхностного натяжения к силам инерции. Для этого случая условие (3.40) принимает вид

(критерий Вебера). (3.46)

При рассмотрении неустановившихся (нестационарных) периодических течений с периодом (например, течений в трубопроводе, присоединенном к поршневому насосу) вводят критерий Струхаля ( ), учитывающий силы инерции от нестационарности, называемые локальными. Последние пропорциональны массе ( ) и ускорению , которое, в свою очередь, пропорционально . Следовательно, условие (3.40) для этого случая принимает вид

или

(критерий Струхаля). (3.47)

При рассмотрении движений жидкости с учетом ее сжимаемости (например, движений эмульсий) вводят критерий Маха ( ), учиты­вающий силы упругости. Последние пропорциональны площади ( ) и объемному модулю упругости [см. сжимаемость – закон Гука]. Поэтому силы упругости пропорциональны и условие (3.40) принимает вид

или

(число Маха). (3.48)

Критерий Маха имеет очень большое значение при рассмотрении движений газа. Чем ближе число М к единице, тем больше влияние сжимаемости газа при его движении.

 

– Конец работы –

Эта тема принадлежит разделу:

Предмет гидравлики · Гидравлика жидкостных ракетных двигателей

Предмет гидравлики... Гидравлика жидкостных ракетных двигателей... Методы гидравлики и гидромеханики Исторический обзор развития гидравлики и механики Жидкости В гидравлике термину жидкость придается более...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основы гидродинамического подобия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Жидкости
· Предмет гидравлики.Исторически механика жидкости выросла из двух отраслей научного знания: эмпирической гидравлики и классической (теоретической) гидромеханики, построенной на то

Определение жидкости
Состояние вещества определяется его атомно-молекулярным строением. В гидравлике с понятием жидкость принято связывать три агрегатных состояния вещества: жидкое, газообразное и плазму.

Основные физические свойства жидкостей
Физические свойства жидкостей проявляются в особенностях их поведения в различных условиях. Они лежат в основе многих законов и зависимостей гидравлики. Рассмотрим основные физические свойства капе

Решение.
1) Находим абсолютное давление воздуха . 2) Определяем абсолютную температуру воздуха . 3) Находим плотность воздуха из уравнения состояния идеального газа для о

Равновесие жидкости. Гидростатическое давление
Гидростатика - раздел гидравлики о законах равновесия жидкости и её взаимодействии с твердыми телами и газами. Равновесие капельных жидкостей.Под равновес

Давление абсолютное, избыточное, вакуум
Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрич

Свойства гидростатического давления
Гидростатическое давление обладает двумя основными свойствами. 1-ое свойство. Силы гидростатического давления в покоящейся жидкости всегда направлены внутрь по нормали к п

Закон Паскаля
Основное уравнение гидростатики можно получить двумя способами: 1) из условия равновесия капельной жидкости в поле земного тяготения; 2) путем интегрирования основного дифференциального ур

Поверхности уровня
Давление жидкости, как видно из формулы (2.6), возрастает с увеличением глубины прямолинейно (по закону треугольника) и на данной глубине есть величина постоянная (рис.2.5). Поверх

Равновесия жидкости Эйлера
Рассмотрим состояние равновесия жидкости в общем случае, т.е. когда на неё действует сила тяжести и сила инерции переносного движения при относительном покое. Выделим в покоящейся жидкости

Гидростатики
На практике удобнее пользоваться не системой уравнений, а одним уравнением, не содержащим частных производных. Умножим каждое уравнение (2.8), соответственно, на и, сложив их, получим . (2

Дифференциальное уравнение поверхности
Поверхностью уровня, или поверхностью равного давления, называется геометрическое место точек, испытывающих в жидкости одинаковое давление. В каждом частном случае равновесия существует множество п

Основные задачи гидростатики
Гидростатика в зависимости от частного случая равновесия жидкости позволяет решать следующие четыре типовые задачи: 1) О законе распределения давления. Задача может быть решена интегрирова

Эйлера. Закон распределения давления
Пусть жидкость находится в абсолютном равновесии в поле земного тяготения, т.е. когда на жидкость действует только сила тяжести , а ось направлена вверх (рис. 2.7).  

Уравнения гидростатики
Выделим в «абсолютно» покоящейся жидкости произвольные точки и с координатами и (рис. 2.9). Удалив из трубок с запаянными верхними концами воздух, погрузим их отвесно в жидкость так, чтобы нижние о

Уравнения гидростатики
Рассмотрим потенциальную энергию жидкости в элементарном объёме, выделенном около произвольной точки с геометрической высотой и давлением (рис. 2.10).   Рис. 2.10. Энергетиче

Приборы для измерения давления
Пьезометры. Погрузим в «абсолютно» покоящуюся жидкость открытые с обоих концов стеклянные трубки так, чтобы их нижние концы совпали с точками и (рис. 2.11). В обеих трубках с откры

Гидравлический пресс. Мультипликатор
Гидравлический пресс. Пресс применяется в технике для создания больших сжимающих усилий, которые необходимы в технике при обработке металлов давлением, прессовании, штамповке,

Гидравлический парадокс
Докажем, что полная сила давления жидкости на плоскую стенку равна произведению площади стенки на гидростатическое давление в центре тяжести этой площади, т.е. . Пусть «абсолютно» покоящая

Центр давления
При решении технических задач необходимо знать не только величину и направление силы давления, но во многих случаях и величину момента этой силы относительно той или иной оси. Определение

Закон Архимеда
Описанный выше прием нахождения вертикальной составляющей силы давления жидкости на криволинейную стенку используют для доказательства закона Архимеда. Пусть в жидкость погружено тело произвольной

При нулевой или слабой гравитация
Ранее было рассмотрено равновесие жидкости под действием лишь одной массовой силы - ее веса. Этот случай имеет место тогда, когда жидкость покоится в сосуде, неподвижном относительно Земли. Пр

Произвольном направлении с постоянным ускорением
Пусть сосуд с жидкостью движется прямолинейно с постоянным ускорением в произвольном направлении, т.е. равноускоренно или равнозамедленно (рис. 2.19). Рис. 2.19. Силы, действующие при отно

С постоянным ускорением
Предположим, что открытый резервуар вместе с находящейся в ней жидкостью движется в вертикальном направлении сверху вниз с некоторым постоянным ускорением , равным или меньшим ускорению свободного

С жидкостью вокруг вертикальной оси
Предположим, что открытый цилиндрический сосуд с жидкостью приведен во вращательное движение вокруг вертикальной оси с угловой скоростью (рис. 2.21). Вращающиеся стенки цилиндра приведут в

При нулевой или слабой гравитация
Пусть равномерно вращающийся сосуд принадлежит к системе, которая перемещается с некоторым ускорением, и пусть при этом инерционная сила переносного движения системы уравновешивает силу тяжести, (р

Газом (паром) в условиях динамической невесомости
Динамическая невесомость характеризуется тем, что сила тяжести уравновешена инерционной силой переносного движения системы, т.е. результирующая массовых сил равна нулю. В этом случае отчетливо выра

Виды движения жидкости
Всякое движение жидкости характеризуется следующими основными параметрами: форма потока, плотность жидкости, скорость, ускорение, давление. В зависимости от изменения основных параметров рассматрив

Элементарная струйка
Через любую точку Апотока (рис.3.3) всегда можно провести линию, в каждой точке которой вектор местной скорости в данный момент времени направлен по касательной к ней. Линией тока

Уравнение неразрывности
Выделим элементарную струйку в области установившегося неравномерного течения жидкости (рис. 3.5). Определим массу жидкости, проходящей через произвольные сечения 1-1 и 2-2 за время .

Гидравлический радиус
В гидравлических расчётах для характеристики размеров и формы поперечного сечения потока вводят понятие о живом сечении и его элементах: смоченном периметре и гидравлическом радиусе.

Для потока жидкости
Гидравлика – это техническая механика жидкости, в которой часто используются упрощённые методы для решения инженерных задач. Во многих случаях при решении практических задач гидрав

Идеальной жидкости в форме уравнений Эйлера
Рассмотрим вопрос о распределении давления в потоке идеальной жидкости. Обратимся к методу, применённому ранее для покоящейся жидкости. Выделим в потоке жидкости точку А

Энергетический смысл уравнения Бернулли
  Рассмотрим частный случай установившегося движения жидкости, когда на неё действует лишь одна массовая сила – сила тяжести. Проекции единичных массовых сил на оси координат буд

Трубка Пито
В гидравлике уравнение Бернулли чаще всего используется в форме (3.18) . Все члены этого уравнения имеют линейную размерность - [м, см]. Подобно тому, как первый член этого уравне

Энергетический смысл уравнения Бернулли
Если рассматривать уравнение Бернулли как уравнение энергии, то каждое из слагаемых должно измеряться в единицах работы. Чтобы перевести уравнение (3.18) в уравнение работы надо умножить его на еди

Струйки вязкой жидкости
Вязкая жидкость при движении испытывает сопротивление, поэтому её удельная энергия не может сохраняться неизменной вдоль струйки. На преодоление трения расходуется часть энергии, которая превращает

Несжимаемой жидкости
Разобьём установившийся параллельноструйный поток на элементарные струйки и, выделив одну из них, определим её мощность в поперечноном сечении 1-1 потока (рис. 3.12). При этом под мощность

Гидравлический и пьезометрический уклоны
Как известно, энергия в природе не может ни теряться, ни возникатьиз ничего. Говоря о потерях энергии в потоке, имеют в виду ту часть механической энергии, которая из-за вязкости жидкости превращае

Расходомер Вентури. Трубка Пито. Струйный насос
  Расходомер Вентури.Рассмотрим применение уравнения Бернулли на примере расходомера Вентури, используемого для измерения расхода различных жидкостей.  

Трубка Пито
Трубка ПИТО – простейший прибор, позволяющий измерять полное давление, представляет собой открытую трубку, направленную навстречу потоку. ПИТО-ПРАНДТЛЯ трубка - прибор для измерения скорос

Режимы течения жидкости
Существуют два принципиально различных режима течения жидкости: ламинарный и турбулентный. Исследованием механизма движения жидкости в различное время занимались мн

Критерий Рейнольдса и гидравлический радиус
Числовые значения коэффициента трения и коэффициента местного сопротивления зависят от режима течения и определяются в соответствии с законами гидродинамического подобия. Для того чтобы по

Распределение скоростей при ламинарном течении
Рассмотрим установившийся ламинарный поток в горизонтальной цилиндрической трубе на достаточном удалении от входа в неё. Труба выбирается горизонтальной с целью исключения действия силы тя

Расход при ламинарном режиме в круглой трубе.
Формула Пуазейля. Коэффициент Кориолиса a При выводе теоретической формулы для определения расхода жидкости воспользуемся полученным законом распределения скоростей по

Потери на трение. Формула Дарси-Вейсбаха
Определим потери напора на трение при ламинарном течении жидкости в круглой трубе. Применим к двум сечениям 1-1 и 2-2 (рис.4.3) уравнение Бернулли: . Для нашего случая -

И потери по длине
Приведённые выше закономерности справедливы лишь для изотермического движения, когда температура жидкости, а, следовательно, её вязкость и плотность во всех точках потока сохраняет одну и ту же вел

Начальный участок ламинарного потока
Формирование параболического профиля скоростей происходит не сразу, а постепенно, на протяжении так называемого начального участка потока, примыкающего к входному сечению трубы. Почти равномерное р

В каналах некруглой формы
Формула Дарси для потерь по длине в некруглых кана-приобретает следующий вид . (4.24) Коэффициент трения здесь подсчитывается по формуле . (4.25) Коэффициент это

Под действием умеренного перепада давлений
Эксплуатационные характеристики гидравлических агрегатов в немалой степени зависят от перетекания жидкости через зазоры. Пусть под действием перепада давления через зазор высотой и глубино

Пульсация местной скорости в турбулентном потоке
Сложность кинематической структуры турбулентного по­тока затрудняет применение обычных методов математического анализа для его описания. Поэтому в отличие от раз­дела о ламинарном течении жидкости,

В турбулентном потоке
Интенсивное перемешивание жидкости в турбулентном потоке и обмен импульсами между ее частицами приводит к выравниванию местных скоростей в живом сечении тока. Поэтому распределение осредненных во в

Гидравлически гладкие и шероховатые трубы
Состояние стенок трубы в значитель­ной мере влияет на поведение жидкости в турбу­лентном потоке. Так при ламинарном движении жидкость движется медленно и плавно, спокойно обтекая на своём пути незн

Потери по длине в гидравлически гладких трубах
Переход от ламинарного к турбулентному режиму течения вызывает увеличение потерь по длине. Это можно объяснить, во-первых, тем, что, перемещаясь от одного сечения потока к другому,

График Никурадзе
По вопросу о влиянии шероховатости на потери по длине долгое время господствовали самые неопределенные и противоречивые представления. Первое систематическое исследование этого вопроса относится к

Библиографический список
  1. Кудинов В.А. Гидравлика: учеб. пособие / В.А. Кудинов, Э.М. Карташов. - 3-е изд., стереотип. - М.: Высш. шк., 2008. - 199 с. 2. Добровольский М.В. Жидкостные ракетные дв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги