рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Физиологические основы слуха

Работа сделанна в 2007 году

Физиологические основы слуха - Курсовая Работа, раздел Искусство, - 2007 год - Восприятие музыки человеком Физиологические Основы Слуха. Человеческое Ухо Воспринимает Звуковые Колебани...

Физиологические основы слуха. Человеческое ухо воспринимает звуковые колебания - раздражения, распространяющиеся в воздухе (или воде). Ухо усиливает и преобразует звуковые колебания. Через барабанную перепонку, представляющую собой эластичную мембрану, и систему передаточных косточек - молоточек, наковальню и стремечко - звуковая волна доходит до внутреннего уха и приводит в движение заполняющую его жидкость.

При этом амплитуда колебаний уменьшается, а звуковое давление увеличивается примерно в 16 раз. Внутреннее ухо, или улитка, представляет собой спиралевидный ход, состоящий из двух с половиной витков. Заполняющая улитку жидкость - пери - и эндолимфа - практически несжимаема, поэтому при смещении стремечка вправо мембрана круглого окна прогибается влево, а возникающие колебания эндолимфы передаются волокнам расположенной вдоль улитки базилярной или основной мембраны и возбуждают специализированные механорецепторы - волосковые клетки.

Волосковые клетки улитки являются основными аппаратами слуховой рецепции. Реагируя на колебания эндолимфы, они превращают улавливаемые звуковые колебания в нервные импульсы, передающие акустическую информацию по волокнам слухового нерва. Возбуждение, возникающее в волокнах слухового нерва, направляется к центральным отделам нервной системы.

Первым центром обработки акустической информации является ядра слухового нерва, после чего она поступает к верхним оливам. Здесь происходит объединение сигналов, поступающих от левой и правой улитки. Затем афферентные пути слуха направляются нижним буграм четверохолмия, которые представляют собой элементарный рефлекторный центр слуховой системы. Именно здесь осуществляется передача слуховых импульсов на двигательные пути, в результате чего возникают такие реакции, как сокращение зрачка в ответ на внезапный звук. Далее мощный пучок волокон идет к внутренним коленчатым телам, от которых начинается последняя часть слухового нерва.

Его волокна направляются к поперечной извилине височной области коры или извилине Гешля, представляющей собой корковый конец слухового анализатора. По своему строению извилина Гешля очень близка к проекционной зрительной коре. Основное место в ней занимает 4-ый афферентный слой, в котором и кончаются волокна слухового нерва.

Характерно, что, как и зрительная проекционная область, извилина Гешля обнаруживает признаки сомато-топического строения. При этом волокна, несущие информацию о высоких тонах, заканчиваются в медиальных, а волокна, несущие информацию о низких тонах в латеральных участках этой извилины. Существенным отличием корковых отделов слухового анализатора является тот факт, что в отличие от зрительного анализатора здесь нет изолированного представительства каждого уха или его части в противоположном полушарии. Моноуральные волокна направляются к обоим полушариям, и поэтому повреждение одной (например, правой) извилины Гешля приводит лишь к незначительному снижению слуха, в несколько большей степени проявляющемуся в противоположном (левом) ухе. Слуховая первичная кора является аппаратом, содействующим продлению слуховых воздействий.

Поэтому, как было показано Г.В.Гершуни, поражение первичных отделов слуховой коры, не отражаясь на остроте слышания продолжительных звуков, приводило к тому, что в ухе, противоположном пораженному полушарию, повышались пороги слушания ультра-коротких звуков продолжительностью от 4 до 10 мсек. Этот факт имеет большое значение как для понимания центральных механизмов слуха, так и для диагностики поражений височной области мозга.

Над первичными отделами слуховой коры, расположенными в извилине Гешля, надстроены вторичные отделы слуховой коры. Она находятся на наружной поверхности височной области, в пределах верхней височной извилины.

В их составе преобладают клетки верхних, ассоциативных слоев коры. В отличие от первичной слуховой коры, ее вторичные отделы не имеют сомато-топического строения и представляют собой сложный интегрирующий аппарат, который обеспечивает сложные формы анализа и синтеза звуковой информации, делая возможными сложные музыкальные и речевые восприятия. Поэтому поражения вторичных отделов слуховой коры, не приводя к снижению остроты слуха и выпадению восприятия простых звуков, вызывает нарушения различения мелодий в одних случаях или сложно построенных звуков речи в других. 2.2 Слуховые ощущения В зависимости от сложности акустического сигнала воспринимаемые звуки могут быть простыми или сложными.

Простые звуки возникают в ответ на синусоидальное колебание воздуха физическими параметрами которого являются число колебаний в секунду или частота в герцах и амплитуда или интенсивность измеряемая в децибелах. Человек способен воспринимать звуковые колебания, частота которых находится в пределах от 20 до 20 000 герц. Колебания с частотой ниже 16 - 20 Гц называются инфразвуком.

Ранее уже отмечалось, что они воспринимаются не ухом, а костью как вибрационные ощущения. В случае колебаний, частота которых превышает 20 000 Гц, говорят об ультразвуке. Внутри зоны подлинных ощущений акустическая частота определяет прежде всего высоту воспринимаемого звука: чем больше частота, тем более высоким кажется нам воспринимаемый сигнал. На высоту звука влияет также и интенсивность раздражителя.

Из классических теорий восприятия высота звука наиболее известна резонансная теория Г.Гельмгольца. Согласно этой теории отдельные волокна основной мембраны представляют собой физические резонаторы, каждый из которых настроен на определенную частоту звукового колебания. Высокочастотные раздражители вызывают колебания участков мембраны вблизи овального окошка, где она наиболее узка (0.08 мм), а низкочастотные - в области верхушки улитки, на участках с максимальной шириной основной мембраны (0.4 мм). Волосковые клетки и связанные с ними нервные волокна передают в мозг информацию о том, какой участок основной мембраны возбужден, а следовательно, и о частоте звукового колебания.

В пользу этой гипотезы говорят факты о возможности путем хирургического удаления отдельных участков основной мембраны вызывать избирательную глухоту на определенные частоты. Однако эти же эксперименты показали, что практически невозможно найти участок мембраны, связанный с восприятием низких тонов.

Теория Г. Гельмгольца была поставлена под сомнение венгерским физиком Г. Бекеши, который показал, что основная мембрана не натянута и ее волокна не могут резонировать наподобие струн. По Бекеши, колебания перепонки овального окна передаются эндолимфе и распространяются на основной мембране в виде бегущей волны, вызывая ее максимальное смещение на большем или меньшем расстоянии от верхушки улитки в зависимости от частоты.

Таким образом, было предложено новое объяснение активации по положению рецепторных элементов, но принцип связи высоты звука и акустической частоты через место раздражения сохранился. На ином принципе кодирования частоты колебания в высоту звука основана теория американского физиолога Э. Уивера. В его экспериментах непосредственно от слухового нерва кошки отводились потенциалы действия и через усилитель подавались на телефонную аппаратуру. Оказалось, что в диапазоне от 20 до 1000 Гц рисунок нервной активности полностью воспроизводит частоту раздражителя, так что по телефону можно было слышать произносимые в помещении фразы.

В последствии были найдены и другие доказательства в пользу предположения, что кодирование высоты звука осуществляется по принципу частоты. В настоящее время большинство исследователей считает, что высокочастотные колебания воспринимаются по принципу места, а низкочастотные - по принципу частоты. В среднем диапазоне частот от 400 до 4000 Гц работают оба механизма.

В определении воспринимаемой громкости звука главную роль играет интенсивность звукового колебания. Верхний абсолютный порог или болевой порог громкости лежит в области 120-140 дб. Кодирование интенсивности звуковых сигналов осуществляется в улитке за счет активации различных по своему положению и порогам наружных и внутренних волосковых клеток. Важные преобразования информации о громкости осуществляются на более высоких уровнях слуховой системы. Об этом свидетельствуют сильное сжатие шкалы громкостей, а также феномен константности воспринимаемой громкости.

Последний заключается в том, что громкость звукового сигнала не меняется или меняется очень слабо от того, подается ли он на одно или на оба уха. Иногда, помимо высоты и громкости, выделяют еще два качества простых звуков, определяемые частотой и интенсивностью акустического сигнала. Это синестезические ощущения объемности и плотности звука. Объемностью называется ощущение полноты звука, в большей или меньшей степени «заполняющего» окружающее пространство.

Так, низкие звуки кажутся более объемными, чем высокие. Под плотностью понимают качество звука, позволяющее различить «плотный» и рассеянный диффузный звук. Звук кажется тем плотнее, чем он выше; плотность возрастает также с увеличением громкости. Чистые тона или простые синусоидальные колебания, при всем их значении для лабораторных исследователей звуковых ощущений, практически отсутствуют в повседневной жизни. Естественные звуковые раздражители имеют значительно более сложную структуру, отличаясь друг от друга по десяткам параметров.

Это и делает возможным столь широкое использование акустических сигналов в действии, включая восприятие музыки. Сложность состава звукового колебания выражается прежде всего в том, что к основной или ведущей частоте, обладающей амплитудой, примешиваются дополнительные колебания, имеющие меньшую амплитуду. Дополнительные колебания, частота которых превышает частоту основного колебания в кратное число раз, называются гармониками.

Типичным примером слухового восприятия акустического сигнала, все дополнительные колебания которого представляют собой гармоники ведущей частоты, является, музыкальный тон. В зависимости от доли отдельных гармоник одного и того же ведущего колебания в звуковом раздражителе он приобретает различный акустический оттенок или тембр. Одинаковые по высоте и интенсивности звуки скрипки, виолончели и фортепиано отличаются друг от друга своим тембром.

К группе тембральных тонов относятся также и гласные звуки языка. Воспринимаемые нами звуки не всегда бывают единичными. Часто они объединяются в одновременные или последовательные группы. В музыке одновременный комплекс звуков называется аккордом. Если частоты колебаний, составляющих акустический сигнал, находятся в кратных отношениях друг к другу, то аккорд воспринимается как благозвучный или консонансный. В противном случае аккорд теряет свою благозвучность, и говорят о диссонансе.

Звуки могут объединяться не только в одновременные комплексы, но и в последовательные серии или ряды. Типичным примером этого служат ритмические структуры. В такой простой ритмической структуре, как азбука Морзе, звуки отличаются только длительностью. В более сложных ритмических структурах еще одной варьирующей переменной оказывается интенсивность. К ним относятся, например, прозодические структуры: ямб, хорей, дактиль применяемые в стихосложении. Наиболее сложны музыкальные мелодии, в которых ритмические структуры звуков разной продолжительности имеют также и различную высоту.

Сложные акустические эффекты возникают, когда частоты раздражителей, одновременно действующих на слуховую систему, оказываются различными. Если это различие невелико, то слушатель воспринимает единый звук, громкость которого меняется с частотой, равной разности частот акустических сигналов. Эти изменения громкости называют биениями. При увеличении различий до 30 Гц и выше появляются разнообразные комбинационные тона, частота которых равна сумме или разности частот раздражителей.

Одновременное присутствие одного звука оказывает влияние на пороги обнаружения другого. Как правило, они возрастают. Вследствие этого говорят о маскировке одного звука другим. Эффект маскировки тем выраженнее, чем ближе физические характеристики двух сигналов. Слуховые ощущения, подобно зрительным, сопровождаются слуховыми последовательными образами. Высота и длительность слухового последовательного образа соответствует частоте и длительности раздражителя. 2.3 Звуковысотный слух Восприятие высоты звукового тона - одно из важнейших условий музыкально слуха.

Можно было бы думать, что звуковысотный слух представляет собой весьма простой, полуавтоматический процесс. Однако экспериментальные данные говорят, что это не так. Допустим, испытуемому предъявляются два одинаковых по высоте, но разных по тембру тона, так что один из них звучит как «И», а другой - как «У». Задача испытуемого заключается в оценке сравнительной высоты этих тонов.

Оказывается, что значительное большинство испытуемых не замечает, что высота обоих тонов одинакова и утверждает, что тон, данный в тембре «И», выше, а тон в тембре «У» - ниже. Этот факт объясняется тем, что люди, выросшие в культуре русского или, например, немецкого языков, не в состоянии абстрагироваться от невербальных особенностей звука и выделить высоту как существенную компоненту предъявленного тона. Восприятие тона оказывается, таким образом, комплексным процессом, включающим в свой состав элементы речевого слуха.

Это процесс, имеющий социально-историческое происхождение и сложное, системное строение. Характерно, что люди, в родном языке которых тембральные компоненты не играют решающей роли, не испытывают подобных трудностей и легко оценивают оба тона, как одинаковые по высоте (тембральные компоненты играют незначительную роль в так называемых тональных языках, к которым относится вьетнамский и некоторые африканские языки.

Основным признаком, отличающим одни звуки тонального языка от других, служит высота тона). Это еще раз показывает, что перцептивные действия, сформированные в разных социальных условиях, имеют разное психологическое строение. Принципиально важным является вопрос о средствах достижения правильного восприятия высоты тона - средствах, позволивших бы слушателя абстрагироваться от дополнительных тембральных компонентов, входящих в состав воспринимаемого звука. Как показало упомянутые опыты, таким средством является пропевание тона, иначе говоря включение в перцептивное действие оценки высоты звука моторной системы, не участвующей в речи, но включенной в систему музыкального слуха.

Когда слушателям предлагалось пропевать оба предъявленных тона, они легко отвлекались от тембральных компонентов и переходили к правильной оценке высоты предложенных тонов. Таким образом, включение развернутого звукового анализа в систему музыкального слуха посредством пропевания позволяет успешно абстрагировать высоту тона от сложной системы дополнительных признаков и в высокой степени повышает точность оценки высоты этого тона. Эти исследования показывают, что даже такой, казалось бы элементарный процесс, как восприятие высоты тона, на самом деле является сложным перцептивным действием.

Чтобы оценить высоту тона, человек должен отвлечься от дополнительных, несущественных компонентов, которые содержатся в звуковом сигнале, например, от тембральных признаков. А это может быть сделано с помощью включения моторных компонентов пропевания, освобождающих высокую точность звуковысотного анализа. 3. О созвучиях, воспринимаемых как унисон Музыкальный слух имеет зонную природу: нашим представлениям звуков до, ре, ми, фа и т.д. соответствуют полосы частот (звуковые зоны), ширина которых в среднем равна 100 центам (цент - сотая часть полутона, т.е. самого малого расстояния между двумя звуками на музыкальном инструменте); нашему представлению интервала соответствует полоса частот (интервальная зона), ширина которой при изолированном воспроизведении интервала в среднем равна 60 центам, при воспроизведении же интервала в мелодии доходит до 100 центов.

Можно предполагать, что современная 12-звуковая (12-зонная) музыкальная система возникла как результат зонной природу музыкального слуха и ширины звуковых и интервальных зон. Унисоном обычно называют созвучие, состоящее из двух или большего количества звуков одной и той же частоты.

Мы воспринимаем как унисон не только созвучия, состоящие из нескольких звуков одной и той же частоты, но и созвучия, состоящие из звуков различной, но близкой частоты.

Унисоны первого типа - физические, унисоны второго типа - физиологические. Физический унисон воспринимается как один звук, физиологический - как один звук, обладающий большей насыщенностью и сопровождаемый биениями простого (при двух звуках) или сложного (при многих звуках) ритма. Слышится при звучании нескольких инструментов, взявших один и тот же звук. Физический унисон может быть осуществлен лишь на специальных акустических аппаратах и на музыкальных инструментах и фиксированной высотой звуков и имеет весьма ограниченной применение в музыкальном искусстве.

Физиологический унисон, состоящий из двух звуков, был исследован Бозанкетом. Он установил, что в среднем регистре «критический интервал», т.е. интервал, при котором начинается «расщепление» двухзвукового унисона, равен приблизительно 1/5 целого тона, или 40 центам.

Наиболее полное исследование двухзвуковых унисонов было произведено Шефером и Гуттманом. Их опыты показали, что расщепление унисона начинается: В большой октаве - при разности частот в 200 центов; В малой октаве - при разности частот в 100 центов; В первой октаве - при разности частот в 30 центов; Во второй октаве - при разности частот в 20 центов; В третьей октаве - при разности частот в 14-15 центов. Вопросу о восприятии многозвуковых унисонов посвящена работа Балея, исследовавшего физиологические унисоны, в состав которых входило от 4 до 10 звуков.

Из опытов следует, что полутон (малая секунда), заполненный десятью звуками, воспринимается испытуемыми как унисон. Но малая секунда, как известно, есть диссонанс, то есть имеет неприятное звучание, унисон же - консонанс (воспринимается как приятный звук). Этот парадокс исследователь объясняет тем, что для восприятия диссонанса требуется различение входящих в него звуков по высоте. Это различение становится невозможным, если полутон заполнен большим количеством звуков, отличающихся друг от друга по высоте на весьма малую величину.

Из всего изложенного можно сделать следующие выводы: Критический интервал двухзвукового унисона, т.е. интервал, при котором уже начинается для слушателя расщепление этого унисона, в различных октавах имеют различную величину. Наибольшую величину (200 центов) критический интервал имеет в большой октаве, то есть в низком регистре, наименьшую (14 центов) - в третьей октаве (в высоком регистре). Таким образом, величина критического интервала уменьшается от большой октавы к третьей.

В начале второй октавы созвучие, состоящее из десяти близких по частоте звуков, даже в пределах полутона, воспринимается как унисон. Все описанные выше эксперименты и их результаты относятся к изолированным унисонам, воспроизводившимся на акустических аппаратах в лабораторных условиях. Указанные обстоятельства не дают права распространить приведенные выше выводы на унисоны, воспринимаемые нами при исполнении музыкальных произведений, так как в последних унисоны находятся в совершенно иных условиях.

Между тем для анализа восприятия музыкальных произведений и для практики музыкального искусства гораздо большее значение имеет исследование унисонов, воспроизводимых и воспринимаемых при исполнении музыкальных произведений. Были проведены эксперименты, которые заключались в следующем: Хор, состоявший из 60 человек, был разделен на 4 группы по голосам (сопрано, альт, тенор, бас). Каждой группе затем было предложено пропеть в унисон 4 первых такта общеизвестной русской народной песни «Эй, ухнем». При помощи электрического аппарата, дающего возможность визуально определить высоту (частоту) любого звука в пределах от 40 до 4000 колебаний в секунду с точностью до 1 цента, определялись звуковысотные границы исследуемого унисона, т.е. высота (частота) входящих в унисон звуков, имеющих максимальную и минимальную высоту (частоту). Исследование унисонов проводилось Н.А.Гарбузовым, С.Г.Корсунским и лаборанткой О.Е. Сахалтуевой.

Получилось, что ширина зоны унисонов колеблется: у сопрано - от 40 центов до 140 центов; у альтов - от 0 центов до 130 центов; у теноров - от 0 центов до 90 центов; у басов - от 0 центов до 70 центов. Если принять во внимание то обстоятельство, что во время исполнения хоровыми группами названной выше мелодии ни один из руководителей хора, присутствовавших при записи, ни сделал ни одного замечания относительно «нечистоты» некоторых унисонов, то следует вывод, что в хоре унисоны шириной в 120, 130 и 140 центов художественно вполне приемлемы.

Таким образом, ширина унисона в 100 центов, полученная ранее в лабораторных условиях, не является предельной в условиях хорового исполнения музыкального произведения. Невозможно еще сказать, какие унисоны при хоровом исполнении воспринимаются нами как «оптимальные». Возможно, однако, что «оптимальность» связана скорее с «узкими», чем с «широкими» унисонами, так как при одноголосном и в особенности при многоголосном хоровом исполнении слишком широкие унисоны должны нарушать интонационную ясность исполняемого музыкального произведения.

В результате можно говорить, что: Музыкальный слух имеет зонную природу: нашим представлениям звуков до, ре, ми, фа и т.д. соответствуют полосы частот (звуковые зоны), ширина которых в среднем равна 100 центам (то есть, самому малому на музыкальном инструменте расстоянию между двумя звуками); нашему представлению интервала соответствует полоса частот (интервальная зона), ширина которой при изолированном воспроизведении интервала в среднем равна 60 центам, при воспроизведении же интервала в мелодии доходит до 100 центов.

Можно предположить, что современная 12-звуковая (12-зонная) музыкальная система возникла как результат зонной природы музыкального слуха и ширины звуковых и интервальных зон. Возникновение и широкое применение в музыкальном искусстве вибрато и унисона сделались возможными только благодаря зонной природе музыкального слуха и значительной ширине звуковых и интервальных зон). Вибрато и унисон не только являются доказательствами зонной природы музыкального слуха, но и представляют собой «звучащие волны», вибрато - зону, звучащую в разновременности, унисон - зону, звучащую в одновременности. 4.

– Конец работы –

Эта тема принадлежит разделу:

Восприятие музыки человеком

Человек - глубоко музыкальное существо, поэтому ему свойственно попадать под мощное духовное и телесное влияние музыки. Б.В.Асафьев говорил, что наша речь имеет интонационную природу. О.Д.Волчек… В состоянии волнения мы можем что-либо напевать или отстукивать пальцами повторяющийся ритм. Можно сказать, что сейчас…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Физиологические основы слуха

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Различные взгляды на психологию музыкального восприятия
Различные взгляды на психологию музыкального восприятия. Фрейд: призвание музыки - редукция напряжения. Творчество вообще - сублимация энергии. К. Прибрам говорил, что в человеке функциониру

Психологические предпосылки возникновения музыки
Психологические предпосылки возникновения музыки. Возникновение музыки основано на коллективном бессознательном. Тому есть доказательства: мелодический строй сходен у не связанных между собо

Тембр. Его связь с высотой
Тембр. Его связь с высотой. Тембр отражает акустический состав сложных звуков. Восприятие тембра и восприятие гармонии - две противоположные, взаимно противоречащие тенденции в восприятии музыкальн

Два компонента мелодического слуха
Два компонента мелодического слуха. Мелодический слух проявляется в особенностях самого процесса восприятия мелодии и в узнавании мелодии. Мелодический слух имеет, по крайней мере, две основ

Тембровое и гармоническое восприятие созвучий
Тембровое и гармоническое восприятие созвучий. Гармонический слух - музыкальный слух в его проявлении по отношению к созвучиям, а следовательно, и ко всякой многоголосной музыке. Штумпф впервые обр

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги