рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

RGB - модель

RGB - модель - раздел Компьютеры, Конспект лекций По дисциплине Компьютерная графика Вкратце История Модели Rgb Такова. Томас Юнг (1773-1829) Взял Три Фонаря И Пр...

Вкратце история модели RGB такова. Томас Юнг (1773-1829) взял три фонаря и при­способил к ним красный, зеленый и синий светофильтры. Так были получены источники света соответствующих цветов. Направив на белый экран свет этих трех источников, уче­ный получил такое изображение (рис. 6.16). На экране свет от ис­точников давал цветные круги. В местах пересечения кругов на­блюдалось смешивание цветов. Желтый цвет давало смешивание красного и зеленого, голубой — смесь зеленого и синего, пурпур­ный — синего и красного, а белый цвет образовался смешением всех трех основных цветов. Некоторое время спустя, Джемс Мак­свелл (1831-1879) изготовил первый колориметр, с помощью ко­торого человек мог сравнивать монохроматический цвет и цвет смешивания в заданной пропорции компонентов RGB. Регулируя яркость любого из смешиваемых компонентов, можно добиться уравнивания цветов смеси и монохроматического излучения. Это описывается следующим образом:

 

Ц = rR +gG + bB,

 

где r, g и b — количество соответствующих основных цветов. Эта модель используется для описания цветов, которые могут быть получены с помощью устройств, которые основаны на принципе излучения. В качестве основных цветов выбран красный (Red), зеленый (Green) и синий (Blue). Другие цвета й оттенки могут быть получены смешиванием опреде­ленного количества основных цветов.

Соотношение коэффициентов r, g и b Максвелл наглядно показал с помощью треугольни­ка, со временем названного его именем. Треугольник Максвелла является равносторон­ним, в его вершинах располагаются основные цвета — R, G и В (рис. 6.17). Из заданной точки проводятся линии, перпендикулярные сторонам треугольника. Длина каждой линии и пока­зывает соответствующую величину коэффициента г, g или b. Одинаковые значения r=g =b имеют место в центре треугольника и соответствуют белому цвету. Следует также указать, что некоторые цвета отображаются точками вне треугольника RGB, — это означает отрица­тельное значение соответствующего цветового коэффициента. Сумма коэффициентов равня­ется высоте треугольника, а при высоте, равной единице, составляет r + g +b = 1.

В качестве основных цветов, Максвелл использовал излучения с такими длинами волн: 630, 528 и 457 им.

Рис. 6.17. Треугольник Максвелла

К настоящему времени система RGB — это официальный стандарт. Решением Между­народной Комиссии по Освещению — МКО (CIE — Commision International de VEclairage) в 1931 году были стандартизированы основные цвета, которые было рекомендовано использовать в ка­честве R, G и В. Это монохроматические цвета светового излуче­ния с длинами волн соответственно:

R — 700 нм, G — 546.1 нм, В — 435.8 нм.

Красный цвет получается с помощью лампы накаливания с фильтром. Для получения чистых зеленых и синих цветов исполь­зуется ртутная лампа. Также стандартизировано значение светового потока для каждого основного цвета.

Еще одним важным параметром для системы RGB является цвет, полученный после смешивания трех компонентов в равных количествах. Это белый цвет. Оказывается, для того, чтобы смешиванием компонентов R,G, и B получить белый цвет, яркости соответствующих источников не должно быть равным, и должны находиться в пропорции

 

.

Рис. 6.18. Трехмерные координаты RGB

LR :L G :LB =1:4,5907:0,0601

Если расчеты цвета делаются для источников излучения с одинаковой яркостью, то указанное соотношение яркостей можно учесть соответствующими масштабными коэффициентами.

Теперь рассмотрим другие аспекты. Цвет, создаваемый смешиванием трех основных компонентов, можно представить вектором в трехмерной системе координат R, G и В, изображенной на рис. 6.18. Черному цвету соответствует центр координат - точка (0,0,0). Белый цвет выражен максимальным значением компонентов. Пусть это максимальное значение вдоль каждой оси равняется единице. Тогда белый цвет - это вектор (1,1,1). Точки, которые лежат на диагонали куба от черного к белому, имеют одинаковые значения координат: R1=G1=B1. Это градации серого - их можно считать белым цветом разной яркости. Следовательно, если все компоненты вектора (r ,g ,b) умножить на одинаковый коэффциент (k=0..1...1), то цвет (kr, kg, kb) сохраняется, изменяется только яркость. Поэтому для анализа цвета важно соотношение компонентов. Если в цветовом уравнении

Ц = rR + gG + bB

разделить коэффициенты r, g и b на их сумму:

 

r' =, r' =, r' =,

 

то можно записать такое цветовое уравнение

Ц=r' R + g' G + b' B.

Это уравнение представляет векторы цвета (r', g', b'), которые лежат в единичной плоскости r' + g' + b' =1. Иными словами, мы перешли от куба к треугольнику Максвелла.

В ходе колориметрических экспериментов были определены коэффициенты (r' , g', b'), это призма из белого гипса, грани которой освещаются источником света. На левую грань направлен источник чистого монохромотического излучения, а правая грань освещается смесью трех источников RGB. Наблюдатель видит одновременно две грани, что позволяет фиксировать равенство цветов.

Результаты экспериментов можно изобразить графически (рис.6.19).

Как видим, коэффициенты r', g', b' могут быть и положительными, и отрицательными, суммой компонентов R,G,B. Но как отнять то, чего нет? Для уравнивания цвета пришлось прибавить к монохроматическому излучению один из компонентов R,G или B. Например, если монохромическое излучение для некоторого значения ג разбавлялось красным, то это можно выразить так:

 

Ц(ג)+r(ג)R=g(ג)G+b(ג)B

 

 
 

Как оказалось, ни один цвет монохромотического излучения не может быть

Рис. 6.19. Трехцветные коэффициенты смешивания RGB

 

представлен только положительными значениями коэффициентов смешивания. Это наглядно можно изобразить с помощью цветового графика, построенного на основе треугольника Максвелла (рис.6.20). Верхняя часть кривой линии соответствует чистым монохромотическим цветам, а нижняя линия - от 380 нм до 780 нм - представляет так называемые пурпурные цвета (смесь синего и красного), которые не являются монохромотическими. точки, которые лежат внутри контура кривой, соответствуют реальным цветам, а вне этого контура - нереальным цветам. Точки внутри треугольника соответствуют положительным значениям коэффициентов r' ,g' ,b' и представляют цвета, которые можно получить смешиванием компонентов RGB.

Рис. 6.20. Цветовой график RGB

Таким образом, система RGB имеет неполный цветовой охват - некоторые насыщенные цвета не могут быть представлены смесью указанных трех компонентов. В первую очередь, это цвета от зеленого к синему, включая все оттенки голубого - они соответствуют левой части кривой цветового графика. Ещё раз подчеркнем, что речь здесь идет о насыщенных цветах, так как ненасыщенные голубые цвета получить можно смешиванием компонентов RGB. Несмотря на неполный охват, система RGB широко используется в данное время - в первую очередь, в цветных телевизорах и дисплеях компьютеров. Отсутствие некоторых оттенков цвета не слишком заметно.

Ещё одним фактором, способствующим популярности системы RGB, является ее наглядность - основные цвета находятся в трех четко различимых участках видимого спектра. Кроме того, одна гипотеза, объясняющих цветовое зрение человека - трехкомпонентная теория - утверждает, что в зрительной системе человека есть три типа светочувствительных элементов.

Один тип элементов реагирует на зеленый, другой тип - на красный, а третий тип - на синий цвет.

Такая гипотеза высказывалась ещё Ломоносовым, её обоснованием занимались многие ученый, начиная с Т.Юнга. Впрочем, трехкомпонентная теория не является единственной теорией цветового зрения человека.

 

Почему RGB-модель нравится компьютеру?

В графических пакетах цветовая модель RGB используется для создания цветов изоб­ражения на экране монитора, основными элементами которого являются три элект­ронных прожектора и экран с нанесенными на него тремя разными люминофорами (рис. 3.6, /). Точно так же, как и зрительные пигменты трех типов колбочек, эти люми­нофоры имеют разные спектральные характеристики. Но в отличие от глаза они не поглощают, а излучают свет. Один люминофор под действием попадающего на него электронного луча излучает красный цвет, другой — зеленый и третий — синий.

Мельчайший элемент изображения, воспроизводимый компьютером, называется пикселом (pixel от pixture element). При работе с низким разрешением отдельные пикселы не видны. Однако если вы будете рассматривать белый экран включенно­го монитора через лупу, то увидите, что он состоит из множества отдельных точек красного, зеленого и синего цветов, объединенных в RGB-элементы в виде триад основных точек. Цвет каждого из воспроизводимых кинескопом пик­селов (RGB-элементов изображения) получается в результате смешивания крас­ного, синего и зеленого цветов входящих в него трех люминофорных точек. При просмотре изображения на экране с некоторого расстояния эти цветовые состав­ляющие RGB-элементов.


Для назначения цвета и яркости точек, формирующих изображение монитора, нужно задать значения интенсивностей для каждой из составляющих RGB-элемента (пиксела). В этом процессе значения интенсивностей используются для управления мощностью трех электронных прожекторов, возбуждающих свечение соответствующего типа люминофора. В то же время число градаций интенсивности определяет цветовое разрешение, или, иначе, глубину цвета, которые характе­ризуют максимальное

 

Рис. 6.21. 1 - возбуждение поверхности монитора с помощью электронного пучка трех типов фосфоров; 2 - триады пикселов красного, зеленого и синего цветов.

 

количество воспроизводимых цветов. На рис. 6.22 приведе­на схема формирования 24-битового цвета, обеспечивающая возможность воспроизведения 256 × 256 × 256 = 16,7 млн. цветов.

Последние версии профессиональных графических редакторов (таких, как, например, CorelDRAW 9, Corel Photo-Paint 9, Photoshop 5.5) наряду со стандартной 8-битовой глубиной цвета поддерживают 16-битовую глубину цвета, которая по­зволяет воспроизводить 65 536 оттенков серого.

Рис. 6.22. Каждый из трех цветовых компонентов RGB - триады может принимать одно из 256 дискретных значений - от максимальной интенсивности (255) до нулевой, соответствующей черному цвету

 

На рис. 6.23 приведена иллюстрация получения с помощью аддитивного синтеза шести (из 16,7 млн.) цветов. Как уже упоминалось ранее, в случае, когда все три цветовые компоненты имеют максимальную интенсивность, результирующий цвет кажется белым. Если все компоненты имеют нулевую интенсивность, то резуль­тирующий цвет — чистый черный.

 

Рис. 6.23. Пример. Формирование 6 из 16,7 млн. возможных цветов путем вариации интенсивностей каждой из трех компонентов R, G и B цветовой модели rgb.

 

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций По дисциплине Компьютерная графика

Московский государственный строительный университет... Кафедра Информационные системы и технологии управления в строительстве...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: RGB - модель

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Москва 2010 г.
ОГЛАВЛЕНИЕ Глава 1. Основные понятия. 6 1.1 Разновидности компьютерной графики. 7 Полиграфия. 8 Мультимедиа. 8 World Wide Web (WWW) 9 3D-график

Разновидности компьютерной графики
Распространение компьютерной графики началось с полиграфии. Но вскоре она вы­рвалась из тесных помещений типографий на простор широкого применения. Огромную популярность завоевали компьютерные игры

Полиграфия
Компьютерная графика начала своё распространение с полиграфии. Полиграфия –довольно сложное направление, требующее от работающего в этой области наибольшей широты знаний. Да

Мультимедиа
Мультимедиа – это область компьютерной графики, связанная с созданием интерактивных энциклопедий, справочных систем, обучающих программ и интерфейсов к ним. В отличие от полиграфии, где ди

World Wide Web (WWW)
Важным событием в жизни общества стало появление глобальной сети Internet. Сейчас происходит бурное развитие этой сети. Возрастают мощности каналов передачи данных, совершенствуются способы обмена

D-графика и компьютерная анимация
Это ещё одно широкое и по-своему сложное направление, особый мир. 3D-графика – это создание искусственных предметов и персонажей, их анимация и совмещение с реальными предметами и интерьерами. В на

САПР и деловая графика
Системы автоматизированного проектирования были исторически первыми интерактивными системами (САПР - английская аббревиатура CAD - Computer Aided Design), которые появил

Геоинформационные системы (ГИС)
Сегодня становятся все более популярными. Это относительно новая для массовых пользователей разновидность систем интерактивной компьютерной графики. Они интегрируют методы и технологии разно

Принципы организации графических программ
Многие пользователи ПК связывают понятие компьютерной графики с программами, предназначенными для редактирования двухмерных цифровых изображений. Это программное обеспечение по принципу действия и

Растровые программы
Большинство программ для редактирования изображений-Addobe Photoshop, Corel PHOTO-PAINT или MS Paint являются растровыми программами. В них изображение формируется из решётки крошечных квадратиков,

Векторные программы
Изображение, созданное в векторных программах, основывается на математических формулах, а не на координатах пикселов. Составляющие основу таких изображений кривые и прямые линии называются векторам

Фрактальные программы
Фрактал - это объект довольно сложной формы, которая получена в результате выполнения простого итерационного цикла над формой начальной, элементарной. Одним из основных свойств фракталов я

Преобразование координат
Сначала рассмотрим общие вопросы преобразования координат. Пусть задана п-мерная система координат в базисе (k1, k2,.... kn), которая описывает положе

Простейшие двумерные преобразования
Точки на xy-плоскости можно перенести в новые позиции путем добавления к координатам этих точек констант переноса. Для каждой точки Р(х, у), которая перемещается в новую точку

Однородные координаты и матричное представление двумерных преобразований
Преобразования переноса, масштабирования и поворота в матричной форме записываются в виде К сожалению, перенос реализуетс

Композиция двумерных преобразований
Понятие композиции было введено в предыдущем разделе. В данном разделе мы покажем, каким образом можно использовать композицию преобразований для объединения фундаментальных матриц R, S и Τ

Матричное представление трехмерных преобразований
Аналогично тому, как двумерные преобразования описываются матрицами размером 3x3, трехмерные преобразования могут быть представлены в виде матриц размером 4x4. И тогда трехмерная точка (x, у, z)

Композиция трехмерных преобразований
Путем объединения элементарных трехмерных преобразований можно получить другие преобразования. В этом разделе показано, как это сделать. Задача состоит в том, чтобы преобразовать отрезки P1

Преобразование объектов
Преобразование объектов можно описать так. Пусть любая точка, принадлежащая определенному объекту, имеет координаты (k1, k2,..., kn ) в n-мерной систе

Преобразование как изменение систем координат
Мы рассматриваем преобразование множества точек, принадлежащих объекту, в некоторое другое множество точек, причем оба этих множества описаны в одной и той же системе координат. Таким образом, сист

Аффинные преобразования на плоскости
Это частный случай преобразований, который достаточно часто используется при создании графических пакетов. Зададим некоторую двумерную систему координат (x,у). Аффинное преобразован

Трехмерное аффинное преобразование
Запишем в виде формулы: где А, В,..., Ν— константы. Дадим также запись в матричной форме:

Мировые и экранные координаты
При отображении пространственных объектов на экране или на листе бумаги с помощью принтера необходимо знать координаты объектов. Мы рассмотрим две системы координат. Первая — мировые координаты,

Основные типы проекций
Изображение объектов на плоскости (экране дисплея) связано с геометрической операцией проектированием. В компьютерной графике используется несколько видов проектирования, но основных - два вида:

Растровые изображения и их основные характеристики
Растр — это матрица ячеек (пикселов). Любой пиксел (pixel — Picture Element) имеет свой цвет. Совокупность пикселов различного цвета образует изображение. В зависимости от расположени

Вывод изображений на растровые устройства
Для иллюстрации работы реальных растровых устройств рассмотрим результаты отображения рисунка-образца на разнообразных графических устройствах. Поскольку в этой книге невозможно показать цветные из

Устранение ступенчатого эффекта
В растровых системах при невысокой разрешающей способности (меньше 300 dpi) существует проблема ступенчатого эффекта (aliasing) — при большом шаге сетки растра пикселы линий образуют как бы

Дизеринг
Хорошо, если растровое устройство отображения может прямо воссоздавать тысячи цветов для любого пиксела. Не так уже и давно это было проблемой даже для компьютерных дисплеев (а точнее — для видеоад

Алгоритмы вывода прямой линии
Рассмотрим растровые алгоритмы для отрезков прямой линии. Предположим, что заданы координаты ( x1, yl - х2, у2) концов отрезка прямой. Для вывода линии необходимо закрасить определенным цвет

Инкрементные алгоритмы
Брезенхэм предложил подход, позволяющий разрабатывать так называемые инкрементные алгоритмы растеризации. Основной целью при разработке таких алгоритмов было построение циклов вычисле

Кривая Безье
Разработана математиком Пьером Безье. Кривые и поверхности Безье были использованы в 60-х годах компанией "Рено" для компьютерного проектирования формы кузовов автомобилей. В насто

Алгоритмы вывода фигур
Фигурой здесь будем считать плоский геометрический объект, который состоит из линий контура и точек заполнения, которые помещаются внутри контура. Контуров может быть несколько — например, если объ

Алгоритмы закрашивания
Рассмотрим алгоритмы закрашивания произвольного контура, который уже нарисован в растре. Сначала определяются координаты произвольного пиксела, находящегося внутри очерченного контура фигуры. Цвет

Стиль заполнения
Кисть и текстура При выводе фигур могут использоваться разные стили заполнения. Простейшее — сплошное заполнение — это когда все пикселы внутри контура фигуры имеют одинаковы

Инструменты выделения. Каналы и маски
Растровое изображение в отличие от векторного не содержит объектов, которые можно легко «расцепить для выполнения их индивидуального редактирования. Поэтому для создания, например, коллаж

Выделение
Под термином выделение (или выделенная область) будем понимать области изображений и объектов, доступные для перемещения, копирования, редактирования и выполнения любых других преобразований. И нао

Инструменты выделения и маскирования
Современные графические редакторы располагают разнообразными инструментами выделения. По принципу формирования выделенных областей их можно разделить на четыре группы. Обычные (геометр

Гистограммы
Инструмент Гистограмма (Histogram) позволяет оценить разброс между минимальной и максимальной яркостью изображения (динамический диапазон). С его помощью можно получить также наглядное представлени

Уровни (Levels)
В основе работы данного инструмента лежит использование гистограмм. Однако в отличие от рассмотренной в предыдущем разделе команды Histogram (Гистограмма) здесь этот инструмент выполняет активную ф

Цветовая коррекция и цветовой баланс
В современных настольных издательских системах для получения качественных изображений (таких, как рекламные объявления и обложки журналов) используется технологическая цепочка, включающая сканирова

Фильтры (Plug-ins) и спецэффекты (Effects)
Большинство фильтров (filters или plug-ins) предназначено для создания специальных эффектов, например имитации мозаики или живописного стиля Ван-Гога. С помощью трехмерных спецэффектов двухмерные г

Преимущества и недостатки растровой графики
Достоинства Одним из достоинств растровой графики является простота и, как следствие, техническая реализуемость (автоматизация) ввода (оцифровки) изобразительной информации. Сущест

Средства создания векторных изображений
Векторные изображения могут быть созданы несколькими видами программ. · Программами векторной графики. · Программами САПР, типичным представителем которых является п

Сравнение механизмов формирования изображений в растровой и векторной графике
  Проиллюстрируем разницу в механизмах работы растровых и векторных редакто­ров на примере описания одного и того же отрезка прямой: · в векторном формате — задаются координа

Структура векторной иллюстрации
Структуру любой векторной иллюстрации можно представить в виде иерархиче­ского дерева. В такой схеме сама иллюстрация занимает верхний уровень, а ее со­ставные части занимают более низкие уровни ие

Математические основы векторной графики
Если основным элементом растровой графики является пиксел (точка), то в слу­чае векторной графики в роли базового элемента выступает линия. Это связано с тем, что в векторной графике любой объект с

Достоинства и недостатки векторной графики
Для эффективного применения векторной графики в творческой работе необхо­димо представлять себе ее достоинства и недостатки. Достоинства Одним из главных достоинств это

Математика фракталов. Алгоритмы фрактального сжатия изображений
У фрактальной математики возникают все новые и новые сферы применения. Коснемся лишь одного перспективного направления — создания алгоритма фрактального сжатия графической информации. В 1991 году т

Обзор основных фрактальных программ
В 1997 году на рынке компьютерной графики произошло знаменательное событие. Среди известных производителей профессионального ПО для графики (Adobe, Macromedia, Autodeck, Corel, Microsoft) объявился

Элементы цвета
Представьте себе, что перед вами лежит лист белой бумаги с нарисованным на нем зеленым квадратом. Вы не задавали себе вопроса, «Почему этот цвет зеленый?» Ответ на него кроется в физических и биоло

Свет и цвет
Как уже было отмечено в рассмотренном выше примере, наличие света является непременным условием визуального восприятия всего цветового богатства окру­жающего нас мира. В то же время из курса элемен

Физическая природа света и цвета
Напомним, что свет представляет собой электромагнитное излучение, связанное с флуктуацией электрического и магнитного полей. Иными словами, свет пред­ставляет собой энергию, а цвет есть продукт вза

Излученный и отраженный свет
Все, что мы видим в окружающем нас пространстве, либо излучает свет, либо его отражает. Излученный цвет — это свет, испускаемый активным источником. Примерами таких источников могут служит

Яркостная и цветовая информация
Как уже отмечалось, излучаемый источником цвет, как правило, представляет со­бой смесь световых волн различной длины (рис. 6.5). Единственным исключе­нием являются так называемые монохроматические

Цвет и окраска
Для правильной интерпретации восприятия цвета необходимо различать понятия цвета и окраски предмета. Окраска — это способность предмета отражать излучение в том или ином диа­пазоне длин во

Стандартные источники
  Для имитации различного освещения измерительные устройства используют стан­дартизованные источники излучения - D50, D65, D93, А, В, С, а также F2 или F8 (флюоресцентные лампы). Эти

Особенности восприятия цвета человеком
Световые волны, излучаемые или отражаемые объектом, собираются хрусталиком и через стекловидное тело проецируются на сетчатку (рис. 6.8). Там они возбуж­дают определенные нервные клетки, физиологич

Колбочки и палочки
За цветовое и яркостное восприятие человеческого глаза отвечают два различных типа нервных клеток (рецепторов), называемых соответственно колбочками и па­лочками. Процесс функционирования

Спектральная чувствительность глаза к яркости
Как можно увидеть из рис. 6.9, области чувствительности различных типов колбочек значительно перекрываются. Поэтому, как правило, в процессе восприятия глазом падающего на него света возбуждаются в

Спектральная чувствительность наблюдателя
Спектральная чувствительность определяет диапазон принимаемых наблюдателем или приемником цветов. На рис. 6.12 представлена спектральная чувствитель­ность глаза. Левее синей области частот — ультра

Цветовой и динамический диапазоны
Для эффективной организации передачи информации между различными устрой­ствами, входящими в состав издательских систем, важно понимать разницу между цветовым и динамическим диапазонами. Цв

Типы цветовых моделей
Большинство графических пакетов позволяют оперировать широким кругом цве­товых моделей, часть из которых создана для специальных целей, а другая - для особых типов красок. Перечислим их: •

Аддитивные цветовые модели
Аддитивный цвет получается на основе законов Грассмана путем соединения лу­чей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получен

Ограничения RGB-модели
Несмотря на то что цветовая модель RGB достаточно проста и наглядна, при ее практическом применении возникают две серьезные проблемы: • ограничение цветового охвата Первая проблем

Субтрактивные цветовые модели
В отличие от экрана монитора, воспроизведение цветов которого основано на из­лучении света, печатная страница может только отражать цвет. Поэтому RGB-модель в данном случае неприемлема. Вместо нее

Цветовая модель CMY
Используется для описания цвета при получении изображений на устройствах, которые реализуют принцип ппоглощения цветов. В первую очередь, она используется в устройствах, которые печатают на бумаге.

CMY и CMYK
Существуют две наиболее распространенные версии субтрактивной модели: CMY и CMYK. Первая из них используется в том случае, если изображение или рисунок будут выводиться на черно-белом принтере, поз

Ограничения модели CMYK
CMYK-модель имеет те же два типа ограничений, что и RGB-модель: аппаратная зависимость; ограниченный цветовой диапазон. В CMYK-модели также нельзя точно предсказать результирующий цвет тол

Возможности расширения цветового охвата CMYK
И профессионалы в области полиграфии, занимающиеся подготовкой и изданием красочных буклетов по живописи, и специалисты в области рекламы, чьи доходы на­прямую связаны с воздействием цветных публик

Перцепционные цветовые модели
Для дизайнеров, художников и фотографов основным инструментом индикации и воспроизведения цвета служит глаз. Этот естественный «инструмент» обладает цветовым охватом, намного превышающим возможност

Достоинства и ограничения HSB-модели
Модель HSB в отличие от моделей RGB и CMYK носит абстрактный характер. Отчасти это связано с тем, что цветовой тон и насыщенность цвета нельзя изме­рить непосредственно. Любая форма ввода цветовой

Назначение эталона
Эталонные таблицы предоставляют собой набор цветов (образцов), которые мо­гут быть адекватным образом отображены в процессе печати на соответствующей им бумаге. Изготовление эталона тщател

Кодирование цвета. Палитра
Для того чтобы компьютер имел возможность работать с цветными изображениями, не­обходимо представлять цвета в виде чисел — кодировать цвет. Способ кодирования зависит от цветовой модели и формата ч

Аналитическая модель
Аналитической моделью будем называть описание поверхности математическими формулами. В КГ можно использовать много разновидностей такого описания. Например, в виде функции двух аргументов z = f(

Векторная полигональная модель
Для описания пространственных объектов здесь используются такие элементы: вершины, отрезки прямых (векторы), полилинии, полигоны, полигональные поверхности (рис. 7.2). Элемен

Воксельная модель
Воксельная модель – это трехмерный растр. Воксел это элемент объема. По аналогии с 2D растрами, состоящими из пиксе

Равномерная сетка
Эта модель описывает координаты отдельных точек поверхности следующим способом (рис. 7.11). Каждому узлу сетки с индексами (i,j) приписывается значение высоты zi,j. Ин­декс

Неравномерная сетка. Изолинии
Неравномерной сеткой назовем модель описания поверхности в виде множества отдельных точек {(х0, у0, z0), (х1, у1, z1), ...,

Визуализация трехмерных объектов
  Любой трехмерный объект может быть изображен по-разному и различными способами. В одном случае нужно показать форму объекта, во втором – внутреннюю структуру объекта, в третьем имит

Показ с удалением невидимых точек
Здесь мы будем рассматривать поверхности в виде многогранников или полигональных сеток. Известны такие методы показа с удалением невидимых точек: сортировка граней по глубине, метод плавающего гори

Модели отражения света
Рассмотрим, как можно определить цвет пикселов изображения поверхности в соответ­ствии с интенсивностью отраженного света при учете взаимного расположения поверхно­сти, источника света и наблюдател

Вычисление нормалей и углов отражения
Вычисление координат вектора нормали. Рассматривая модели отражения света, вы, наверное, обратили внимание на то, что нормаль к поверхности — важный элемент. Опре­деление вектора н

Метод Гуро
Этот метод предназначен для создания иллюзии гладкой криволинейной поверхности, которая описана в виде многогранников или полигональной сетки с плоскими гранями. Ес­ли каждая плоская грань имеет од

Метод Фонга
Аналогичен методу Гуро, но при использовании метода Фонга для определения цвета в каждой точке интерполируются не интенсивности отраженного света, а векторы нормалей. • Определяются нормал

Имитация микрорельефа
Пусть нам необходимо показать поверхность, изобилующую мелкими неровностями. Можно попытаться создать полигональную модель, аппроксимирующую все видимые детали рельефа, вплоть до мельчайших бугорко

Преломление света
Законы преломления света следует учитывать при построении изображений прозрачных объектов. Модель идеального преломления. Согласно этой модели луч отклоняется на границе д

Трассировка лучей
Методы трассировки лучей (Ray Tracing) на сегодняшний день считаются наиболее мо­щными и универсальными методами создания реалистичных изображений. Известно много примеров реализации алгорит

Положительные черты
1. Универсальность метода, его применимость для синтеза изображения довольно сложных пространственных схем. Воплощает много законов геометрической оптики. Просто реализуются разнообразные проекции.

Анимация
  В предыдущих параграфах мы рассмотрели методы и алгоритмы создания трехмерных моделей. В этом параграфе мы затронем вопросы, связанные с анимацией этих моделей. Можно дать

Графические системы на базе сопроцессора i82786
Рис. 9.2. Графическая система на базе i82786 Имеют следующие характеристики: · неавтономная работа под

Графические системы на универсальном процессоре
Одни из самых специфичных графических систем. Расширение числа аппаратно реализованных функций мало приемлемо по следующим причинам: 1. Набор графических функций был бы жестко зафиксирован

Высокоскоростные графические системы
Кроме высокоскоростной генерации и манипулирования растровыми образами для формирования высокореалистичных картин в реальном времени, в подобных системах требуются сбалансированные по времени модел

NGP (Network graphics рrotocol)
Первые результаты по стандартизации были получены применительно к сети ARPA в рамках работ по разработке протоколов для аппаратно и машинно-независимого представления графических данных в сети.

Международная деятельность по стандартизации в машинной графике
Работы по протоколам послужили отправной точкой по развитию стандартизации в машинной графике. В 1974 г. в США был создан комитет по стандартизации машинной графики GSPC в АСМ/SIGGRAPH. В 1975 г. в

Деятельность ISO, IEC по стандартизации в машинной графике
Главными организациями формирующими международные стандарты в области информационной технологии являются ISO (International Organization for Standartization) и IEC (International Electrotechnical C

Core-System
Существенным этапом в области стандартизации машинной графики явилась публикация проекта стандарта CORE-SYSTEM (GSPC-77) , модель которой приведена на рис. 10.5. Главные идеи, положенные в основу с

GKS (Graphical Kernel System)
Результатом работ в ФРГ было создание системы GKS. Модель графической системы, положенная в ее основу, приведена на рис. 10.6. В 1979 г. GKS была принята в качестве отправной точки международного с

GKS-3D (Graphical Kernel System for Three Dimensions)
Отличия GKS-3D от GKS заключаются в добавлении 3D функций:  примитивов 3D вывода;  установки атрибутов вывода (2 функции);  поддержки 3D преобразо

CGI (Computer Graphics Interface)
Это стандарт ISO на интерфейс между аппаратно-независимой частью графического программного обеспечения (базисной графической системой) и аппаратно-зависимой (драйверами). Этот интерфейс ранее (в ра

Протокол TEKTRONIX
Разработан одноименной фирмой, выпускающей графические дисплеи. Ввиду широкой распространенности устройств этой фирмы другие разработчики графической аппаратуры часто обеспечивают режим совместимос

Язык PostScript
Особое место среди графических языков высокого уровня занимает интерпретируемый язык описания страниц PostScript , разработанный фирмой Adobe и используемый не только для описания и построения изоб

Аппаратно-независимые графические протоколы
Аппаратно-независимый графический протокол или метафайл представляют собой процедурное описание изображения в функциях виртуального графического устройства. Он обеспечивает возможность запоминать г

Проблемно-ориентированные протоколы
Прикладные графические протоколы это объектно - ориентированные протоколы передачи данных между прикладными системами. Они наиболее компактны (вследствие высокой семантической насыщенности), допуск

Векторные форматы
Файлы векторного формата содержат описания рисунков в виде набора команд для построения простейших графических объектов (линий, окружностей, прямоугольников, дуг и т. д.). Кроме того, в этих файлах

Растровые форматы
В файлах растровых форматов запоминаются: • размер изображения — количество видеопикселей в рисунке по горизонтали и вертикали • битовая глубина — число битов, используемых для хр

Методы сжатия графических данных
Присжатии методом RLE(Run — Length Encoding) последовательность повторяющихся величин (в нашем случае — набор бит для представлен

Преобразование файлов из одного формата в другой
Необходимость преобразования графических файлов из одного формата в другой может возникнуть по разным причинам: • программа, с которой работает пользователь, не воспринимает формат его фай

Видеоадаптеры
Важной чертой архитектуры персонального компьютера с позиций графики является то, что контроллер видеосистемы (видеоадаптер) расположен рядом с процессором и опера­тивной памятью и подключен к сист

Манипуляторы
Первые персональные компьютеры располагали для ввода информации и управ­ления работой компьютера единственным устройством — клавиатурой. Для реа­лизации более простого управления нужно было создать

Дигитайзер
Дигитайзер или планшет, как его тоже называют, состоит из двух основных элементов: основания и курсора, двигающегося по его поверхности. Это устройство, изначально предназначенное для оцифровки изо

Оборудование мультимедиа
Что такое мультимедиа? Мультимедиа — это комплексное представление информации — вывод данных в текстовом, графическом, видео-, аудио- и мультипликационном видах. Мультимедийный набор- э

Мониторы
Монитор компьютера (рис. 12.11) предназначен для вывода на экран текстовой и гра­фической информации. Это практически единственный элемент компьютера, кото­рый нельзя в дальнейшем модернизир

Характеристики мониторов
В настоящее время существует большое разнообразие типов мониторов. Их мож­но охарактеризовать следующими основными параметрами. Тип экрана: электронно-лучевая трубка или ЭЛТ (CRT)

Газоплазменные мониторы
Газоплазменные мониторы состоят из двух пластин, между которыми находится газовая смесь, светящаяся под воздействием электрических импульсов. Такие мо­ниторы не имеют недостатков, присущих Ж

Видеокарта
Видеокарта (графическая карта, видеоадаптер) реализует вывод информации на монитор. От ее качества зависят: скорость обработки информации; четкость изображения и размеры;

Функции графического ускорителя
Графический ускоритель нужен для ускорения прорисовки экрана. Это связано с тем, что при работе с изображениями (особенно в векторной графике) перерисовка занимает значительную часть ресурсов компь

Выбор видеокарты под монитор
Для нового поколения игр необходимы видеокарты, чипы которых поддерживают стандарты ЗD-ускорения, На данный момент с этой задачей лучше других, на наш взгляд, справляются видеокарты на чипах RivaTN

Периферия
Периферийные устройства служат для расширения функциональных возможно­стей персонального компьютера, удобства управления им и представления инфор­мации в различных формах в процессе ее обраб

Принтеры
Кроме мониторов к устройствам вывода графических данных относятся и прин­теры. Принтер (printer), или печатающее устройство, предназначен для вывода информации на бумагу. Все современные при

Плоттеры
Плоттер (plotter), или графопостроитель, — это устройство для вывода различ­ных чертежей, географических карт, плакатов и других изображений на бумагу большого формата. Плоттеры бываю

Звуковые карты
Звуковая карта вставляется в свободный слот расширения компьютера и позво­ляет осуществлять запись, воспроизведение и синтез звука. Встроенный синтеза­тор помогает воспроизводить сложные зву

Сканеры
Сканер (scaner) — устройство для копирования графической и текстовой информа­ции и ввода ее в компьютер. Персональные сканеры бывают трех типов — ручные, планшетные и барабанные.

Цифровые фотоаппараты и фотокамеры
Цифровая фотокамера — это еще один тип устройства оцифровывания графики и ввода изображений в ПК. В отличие от обычного фотоаппарата в его цифровом аналоге изображение проецируется не на фот

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги