рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ОБЩИЕ ЗАМЕЧАНИЯ

ОБЩИЕ ЗАМЕЧАНИЯ - Конспект Лекций, раздел Компьютеры, Вычислительные машины однопроцессорные ЭВМ При Рассмотрении Работы Процессора Подчеркивалось, Что Информация О Том, Каку...

При рассмотрении работы процессора подчеркивалось, что информация о том, какую машинную операцию надо выполнить в данный момент, над какими операндами и куда поместить результат, задается машинной командой. При этом любая программа неймановской машины представляет собой последовательность команд, отображающих все действия, необходимые для решения задачи по некоторому алгоритму.

Машинная команда представляет собой код, определяющий операцию вычислительной машины и данные, участвующие в операции. В общем случае команда должна содержать также в явной или неявной форме информацию об адресе, по которому помещается результат операции, и об адресе следующей команды.

Машинная операция – это действия машины по преобразованию информации, выполняемые под воздействием одной команды.

По характеру выполняемых операций различают следующие основные группы команд:

· Арифметические операции над ЧФЗ и ЧПЗ.

· Команды десятичной арифметики.

· Логические (поразрядные) операции.

· Передача кодов (пересылка операндов).

· Операции ввода-вывода.

· Управление порядком выполнения команд (передача управления).

· Задание режима работы машины и различные дополнительные действия.

В общем виде машинная команда имеет структуру, изображенную на рис. 5.1.

 

 

Таким образом, команда состоит из операционной и адресной частей. Эти части, в свою очередь, могут состоять из нескольких полей (особенно адресная).

Операционная часть – содержит код, который задает вид операции (сложение, умножение, передача и т.д.).

Адресная часть – содержит информацию об адресах операндов и результата операции, а в некоторых случаях и следующей команды.

Структура команды – определяется составом, назначением и расположением полей в команде.

Формат команды – это ее структура с разметкой номеров разрядов, определяющих границы отдельных полей команды.

Задача выбора оптимальных структур и форматов команд при проектировании новых ЭВМ является одной из важнейших, поскольку от правильности ее решения зависит быстродействие и производительность ЭВМ.

Проблема состоит в том, что, с одной стороны, в команде желательно разместить максимум информации о выполняемой операции. С другой стороны, для упрощения аппаратуры и повышения быстродействия ЭВМ длина формата команды должна быть согласована с длиной обрабатываемых машинных слов, составляющей обычно 16-32 бита (для того чтобы можно было использовать для хранения и обработки операндов и команд одни и те же аппаратные средства). Формат команды должен быть, по возможности, короче, укладываться в машинное слово или полуслово, а для ЭВМ с коротким словом (8-16 бит) быть малократным машинному слову. Решение проблемы выбора оптимального формата команды значительно усложняется в микроЭВМ, работающих с коротким словом.

В абсолютном большинстве случаев ОП универсальных ЭВМ является адресной. Это значит, что каждой хранимой в ОП единице информации (байту, слову, двойному слову) ставится в соответствие специальное число – адрес, определяющий место ее хранения в памяти. В современных ЭВМ различных типов минимальной адресуемой в памяти единицей информации в большинстве случаев является один байт, т.е. 8 бит с 9-м контрольным разрядом. Иногда бывает и полубайт, т.е. 4 разряда и даже один бит. Более крупные единицы информации – слово, двойное слово и т.д. образуются из целого числа байт. В зависимости от способа хранения информации в ОП их адресом считается адрес старшего или младшего байта.

В общем случае разрядность машинного слова может определяться разрядностью АЛУ процессора, разрядностью шины данных, шириной выборки ОП и другими факторами. Наиболее часто разрядность машинного слова соответствует разрядности операндов, которые наиболее эффективно обрабатываются процессором. Например, процессор I80386 имеет 32- разрядные АЛУ и 32- разрядную шину данных. Однако разработчики устройств на базе этого процессора за машинное слово выбрали 16- разрядный двоичный код при ширине выборки ОП 1 байт. Следует иметь в виду, что ширина выборки ОП – это техническая характеристика БИСов памяти, а байт, слово, двойное слово и т.д. – логические единицы информации, которые формируются контроллером памяти и операционной системой и обычно кратны ширине выборки. При рассмотрении процессов передачи и обработки информации внутри ЭВМ в большинстве случаев оперируют именно этими логическими единицами.

– Конец работы –

Эта тема принадлежит разделу:

Вычислительные машины однопроцессорные ЭВМ

Вычислительные машины.. конспект лекций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ОБЩИЕ ЗАМЕЧАНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЧАСТЬ 2
  Настоящий конспект лекций продолжает материал, изложенный в первой части. Конспект посвящен изучению основ организации и функционирования ЭВМ в целом и ее отдельных узлов, взаимодей

ПРИНЦИПЫ ПОСТРОЕНИЯ УСТРОЙСТВ ВНУТРЕННЕЙ ПАМЯТИ
Памятью ЭВМ называют совокупность устройств, служащих для запоминания, хранения и выдачи информации. Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами или пам

СТРУКТУРА ПАМЯТИ ЭВМ
Классическая пятиблочная структура Неймана, рассмотренная ранее, предполагала наличие только одного устройства памяти – ОП. Однако современные ЭВМ имеют иерархическую структуру памяти, каждый урове

АДРЕСНАЯ ПАМЯТЬ
В памяти с адресной организацией размещение и поиск информации в ЗМ основаны на использовании адреса хранения единицы информации, которую в дальнейшем для краткости будем называть словом. Ад

АССОЦИАТИВНАЯ ПАМЯТЬ
В памяти этого типа поиск информации происходит не по адресу, а по ее содержанию. Под содержанием информации в данном случае понимается не смысловая нагрузка лежащего на хранении в ячейке памяти сл

СТЕКОВАЯ ПАМЯТЬ (МАГАЗИННАЯ)
Стековая память, так же как и ассоциативная, является безадресной. Стековая память может быть организована как аппаратно, так и на обычном массиве адресной памяти. В случае аппаратной реал

СТРУКТУРЫ АДРЕСНЫХ ЗУ
Адресные ЗУ наиболее широко используются в современных ЭВМ для построения самых разнообразных устройств памяти. В процессе эволюции ЭВМ принципы построения и аппаратная реализация данных ЗУ прошли

ЗУ ТИПА 2D
Организация ЗУ типа 2D обеспечивает двухкоординатную выборку каждого ЗЭ ячейки памяти. Основу ЗУ составляет плоская матрица из ЗЭ, сгруппированных в 2k ячеек по n разрядов. Обращение к я

ЗУ ТИПА 3D
Для построения ЗУ больших объемов используют другую схему и другие типы ЗЭ, которые имеют не один, а два конъюнктивно связанных входа выборки. В этом случае адресная выборка осуществляется только п

ЗУ ТИПА 2D-М
В ЗУ типа 2D-M ЗМ для записи n-разрядных двоичных чисел состоит из n плоских матриц для одноименных разрядов всех чисел, что имеет место в ЗУ типа 3D. Однако процесс записи и считывания информации

ЗЭ НА ФЕРРИТОВЫХ КОЛЬЦАХ
Памяти на магнитных (ферритовых) сердечниках с прямоугольной петлей гистерезиса появились в начале 50-х годов и сыграли большую роль в увеличении объемов ОП и производительности ЭВМ. Однако появивш

ЗЭ НА ПОЛУПРОВОДНИКОВЫХ ЭЛЕМЕНТАХ
Абсолютное большинство ЗУ внутренней памяти современных ЭВМ (а в универсальных ЭВМ общего назначения – 100%) построено на полупроводниковых ЗЭ. По сравнению с другими типами ЗЭ полупроводниковые ЗЭ

ПОСТОЯННЫЕ ЗУ (ПЗУ, ППЗУ)
Постоянные ЗУ в рабочем режиме ЭВМ допускают только считывание хранимой информации. В зависимости от типа ПЗУ занесение в него информации производится или в процессе изготовления, или в эксплуатаци

ФЛЭШ-ПАМЯТЬ
Флэш-память (flash-memory) по типу запоминающих элементов и основным принципам работы подобна памяти типа EEPROM (ППЗУ) с электрическим перепрограммированием. Однако ряд архитектурных и структурных

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ВОЗМОЖНЫЕ СТРУКТУРЫ МАШИННЫХ КОМАНД
Процесс эволюции ЭВМ и расширение сферы их целевого использования, совершенствование аппаратного и программного обеспечения ЭВМ привели к созданию машинных команд очень сложной структуры. Однако, е

СПОСОБЫ АДРЕСАЦИИ
Определимся с терминами, которые будут использоваться ниже. Адресный код (АК) – это информация об адресе операнда, содержащаяся в команде. Исполнительный адрес (АИ)

КОМАНДЫ ПЕРЕДАЧИ УПРАВЛЕНИЯ
Ранее уже отмечалось, что порядок выполнения команд может быть естественным и принудительным. При естественном порядке после выполнения очередной команды выбирается команда, расположенная в следующ

КОМАНДЫ БЕЗУСЛОВНОГО ПЕРЕХОДА (БП)
Общая структура команды безусловного перехода изображена на рис. 5.11. При исполнении этой команды переход осуществляется всегда независимо от каких-либо условий.  

КОМАНДЫ УСЛОВНОГО ПЕРЕХОДА (УП)
В этом случае адрес следующей команды зависит от выполнения некоторого условия. Обычно если условие выполняется, то происходит передача управления. Если условие не выполняется, то берется следующая

КОМАНДЫ ПЕРЕХОДА НА ПОДПРОГРАММУ
Подпрограмма представляет собой фрагмент программы, обращение к которому может иметь место в любой точке главной программы. Для перехода к подпрограмме в ЭВМ существуют команды безусловного

ИНДЕКСАЦИЯ
Характерным моментом в процессе переработки информации в ЭВМ является цикличность вычислительных процессов, при которых одни и те же операции могут выполняться над различными операндами, расположен

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ПРИНЦИПЫ ОРГАНИЗАЦИИ СИСТЕМ ПРЕРЫВАНИЯ ПРОГРАММ
В процессе выполнения программ внутри ЭВМ или во внешней среде могут возникнуть события, требующие немедленной реакции со стороны процессора. Реакция состоит в том, что процессор прерывает обработк

ХАРАКТЕРИСТИКИ СИСТЕМ ПРЕРЫВАНИЯ
Эффективность систем прерывания ЭВМ может оцениваться по весьма многочисленным характеристикам, которые отражают особенности их технической реализации. Однако для изучения общих принципов построени

ВОЗМОЖНЫЕ СТРУКТУРЫ СИСТЕМ ПРЕРЫВАНИЯ
Конкретные технические реализации систем прерывания имеют множество вариантов и зависят от типа используемого процессора, структуры системного интерфейса, целевого назначения ЭВМ. В то же время все

ОРГАНИЗАЦИЯ ПЕРЕХОДА К ПРЕРЫВАЮЩЕЙ ПРОГРАММЕ
Конкретные реализации процедур перехода к прерывающей программе во многом зависят от структуры системы прерывания и типа используемого процессора. Между тем можно сформулировать некоторые общие при

РЕАЛИЗАЦИЯ ФИКСИРОВАННЫХ ПРИОРИТЕТОВ
Рассмотрим только простейший случай установки приоритетных соотношений, состоящий в том, что уровень приоритета определяется порядком присоединения ЛЗП к входам системы прерывания, т.е. разрядам Рг

РЕАЛИЗАЦИЯ ПРОГРАММНО-УПРАВЛЯЕМЫХ ПРИОРИТЕТОВ
Существуют три основных метода реализации в ЭВМ систем программно-управляемых приоритетов – порог прерывания, маска прерывания и смена приоритетов. Первый используется, в основ

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ПРОСТЕЙШАЯ МИКРОЭВМ
В зависимости от целевого назначения и используемого процессора ЭВМ существенно различаются по своим вычислительным возможностям, размерам, стоимости конструкции. Несмотря на то что принципы функци

СИСТЕМНЫЙ ИНТЕРФЕЙС МИКРОЭВМ. ЦИКЛ ШИНЫ
Современные процессоры конструктивно выполняются либо в виде одной БИС (СБИС), либо в виде нескольких БИС, установленных на плате модуля процессора в непосредственной близости друг от друга. Кроме

ПРОМЕЖУТОЧНЫЙ ИНТЕРФЕЙС
К процессору микроЭВМ обычно подключается достаточно много ПУ. Это клавиатура, индикаторы, печатающие устройства, накопители, различные датчики и исполнительные устройства систем управления и т.д.

МП С ФИКСИРОВАННОЙ СИСТЕМОЙ КОМАНД
В п. 3 уже рассматривались принципы функционирования элементарного гипотетического микропроцессора (термин "микропроцессор" и "процессор" далее используются как синонимы). Между

РЕГИСТРЫ ДАННЫХ
Для хранения участвующих в операции данных предусмотрены семь 8-раз­рядных регистров. РгА, называемый аккумулятором, предназначен для обмена информацией с памятью и ПУ, т.е. его содержимое может бы

РЕГИСТР ПРИЗНАКОВ
Ранее отмечалось, что РгП называют еще регистром флажков и обозначают часто буквами Ф или F. Это 8-разрядный регистр, в котором используются только 5 разрядов. Он предназначен для хранения ряда при

МП С ТОЧКИ ЗРЕНИЯ ПРОГРАММИСТА
С точки зрения пользователя, реализация физических процессов, протекающих в микросхеме, не представляет особого интереса, как и физическая реализация отдельных узлов МП. В распоряжение пользователя

МП-УСТРОЙСТВО НА ОСНОВЕ МП КР580ВМ80А
Упрощенная структурная схема вычислительного устройства на базе МП I8080 (КР580ВМ80А) представлена на рис. 7.9. Это простейшая микроЭВМ минимальной конфигурации, структура которой является частным

ФОРМАТЫ ДАННЫХ МП КР580
Основной формат данных изображен на рис. 7.11.     В микроЭВМ байт данных может интерпретиров

ФОРМАТЫ КОМАНД МП 580ВМ80
Для команд используются одно-, двух-, трехбайтовые форматы, причем код операции (КОП) занимает всегда 1 байт. Кроме того, следует помнить, что ША имеет 16 разрядов, т.е. позволяет адресоваться к па

СПОСОБЫ АДРЕСАЦИИ
Способы адресации рассмотрим очень коротко, поскольку все типы адресации в общем виде разобраны ранее.   Прямая адресация В этом случае источником или приемни

СИСТЕМА КОМАНД МП 580
Для программирования микроЭВМ на базе МП комплекта КР580 используется 244 команды. Ниже очень коротко будет рассмотрена только часть команд, необходимая для программирования простых задач. Таблицы

КОМАНДЫ УПРАВЛЕНИЯ
Команды этой группы не изменяют содержимого РгП (F).   Команды безусловного перехода По прямому адресу JMP @, где @ – двухбайтовый адре

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги