рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математические основы компьютерной графики

Математические основы компьютерной графики - Лекция, раздел Компьютеры, Инженерная и компьютерная графика Для Того Чтобы Отображать Графические Объекты На Дисплее Нужно Иметь Некий Ин...

Для того чтобы отображать графические объекты на дисплее нужно иметь некий инструмент, позволяющий легко и просто описывать эти объекты на языке математики. Положение точек на плоскости очень удобно описывать с помощью декартовой системы координат. Чтобы создать декартову систему координат нужно провести две прямые неколлинеарные линии, которые называют осями. Пусть они пересекаются в точке O, которую называют началом координат. Выберем на построенных осях единицу измерения. Тогда положение любой точки плоскости можно описать через координаты этой точки, которые представляют собой расстояния от начала координат до проекций точки на соответствующие оси координат. Проекцией точки на координатную ось называется точка пересечения прямой, проходящей через заданную точку и параллельной другой оси координат. Вообще введенные оси координат могут располагаться под произвольным углом (рисунок 1).


Рисунок 1 – Оси координат

Однако, на практике удобно пользоваться системой координат со взаимно перпендикулярными осями. Такая система координат называется ортогональной. Оси координат имеют названия; горизонтальная ось называется осью абсцисс ( Ox ), вертикальная – осью ординат ( Oy ). Таким образом, точка на плоскости представляется двумя своими координатами, что записывается в виде двумерного вектора P=(x,y).

Математический аппарат описания точек на плоскости с помощью декартовой системы координат идеально подходит для выполнения различных аффинных преобразований над точками (сдвиг, масштабирование, вращение).

Точку P(x,y), заданную на плоскости можно перенести (сдвинуть) в новую позицию путем добавления к координатам этой точки констант переноса. Для произвольной точки P=(x,y), которая перемещается в новую точку P'=(x',y'), сдвигаясь на Tx единиц параллельно оси абсцисс и на Ty единиц параллельно оси ординат, можно записать следующие выражения: x'=x+Tx, y'=y+Ty. Так, например, точка с координатами P(1,2) смещаясь на расстояние (5,7) преобразуется в точку P'(6,9). Определяя точку и перенос как вектор-строки P=(x,y), P'=(x',y') и T=(Tx,Ty) можно записать преобразование переноса (сдвига) в векторной форме: (x',y')=(x,y)+(Tx,Ty) или P'=P+T. Преобразованию можно подвергнуть не только одни точки. Геометрический объект можно переместить, применив к каждой его точке преобразование переноса. Так, если в описании объекта имеются отрезки прямой, то достаточно применить преобразование к концам отрезка и затем провести прямую линию между двумя преобразованными точками. Это правило справедливо и для операций масштабирования и поворота. На рисунок 2 представлен результат действия на треугольник операции переноса на расстояние (2,-1).


Рисунок 2 – Операция переноса на заданное расстояние

Точки можно подвергнуть операции масштабирования (растяжения или сжатия) в Sx раз вдоль оси абсцисс и в Sy раз вдоль оси ординат. Полученные в результате новые точки будут выражаться как: x'=x*Sx ; y'=y*Sy. Определив S как

 

данные выражения можно записать в матричной форме:

 

 

или P'=P*S. На рисунке 3 показан треугольник, промасштабированный с коэффициентами 0,5 по оси абсцисс и коэффициентом 2 вдоль оси ординат.

 


Рисунок 3 – Процесс масштабирования

 

Следует отметить, что операция масштабирования производится относительно начала координат. В результате преобразования объект может стать меньше/больше в размерах и ближе/дальше от начала координат. Пропорции объекта также могут измениться при масштабировании с различными коэффициентами: . Для сохранения пропорций необходимо, чтобы масштабные коэффициенты были равны: Sx=Sy.

Точка плоскости P=(x,y) может быть повернута на произвольный угол относительно начала координат и перейдет в новую точку P'=(x',y') (рисунок 4)


Рисунок 4 – Поворот точки на определенный угол

 

Выведем формулы для пересчета точки (x,y) в точку (x',y'). Обозначим расстояние от начала координат до точки P(x,y) через Очевидно, что расстояние от начала координат до точки P'(x',y') также будет Пусть Q и Q' - проекции точек P и P' соответственно на ось абсцисс. Тогда из прямоугольного треугольника OP'Q' и тригонометрических определений синуса и косинуса имеем:

Домножим правую и левую части уравнений на

Используя простейшие тригонометрические свойства прямоугольного треугольника OPQ, следует заметить, что , а . Таким образом, формула "перевода" точки P(x,y) в точку P'(x',y') поворотом на угол относительно начала координат будет:

В матричном виде преобразование вращения будет выглядеть так:

Так треугольник с координатами вершин (20,0),(60,0),(40,100) после поворота на угол 45 градусов по часовой стрелке относительно начала координат градусов будет иметь новые значения координат вершин: .

Точка плоскости P(x,y) может быть легко отражена относительно прямых y=0, x=0, y=x следующим образом. Отражение относительно прямой y=0 (ось абсцисс) может быть получено с использованием матрицы Так, например, точка P=(2,3) при таком отражении преобразуется в точку (рисунок 5).

Подобным образом матрица отражения относительно прямой x=0 (ось ординат) будет иметь вид Точка P=(2,3) при отражении относительно оси ординат преобразуется в точку (рисунок 5).

Отражение относительно прямой y = x осуществляется с помощью матрицы Точка P=(2,3) в результате такого отражения преобразуется в точку (рисунок 5).


Рисунок 5 - Отражение

Рассмотренные выше аффинные преобразования переноса, масштабирования, вращения и отражения можно записать в матричной форме следующим образом: P'=P+T, P'=P*S, P'=P*R, P'=P*M, где P' - координаты преобразованной точки, P - координаты исходной точки, T - вектор сдвига ( translate ), S - матрица масштабирования ( scale ), R - матрица вращения ( rotate ), M - матрица отражения ( mirror ). К сожалению, операция переноса (сдвига) реализуется отдельно (с помощью сложения) от масштабирования, поворота и отражения (с помощью умножения). Тем не менее, существует возможность, чтобы все эти элементарные преобразования (перенос, масштабирование, вращение, отражение) можно было реализовать с помощью только операций умножения матриц. Данная возможность реализуется с помощью так называемых однородных координат точки.

Однородное представление двумерной точки (x,y) в общем случае имеет вид (wx wy w), где w - любой ненулевой скаляр, иногда называемый множителем. При этом если для точки задано ее представление в однородных координатах P(x y w), то найти ее двумерные координаты можно поделив первые две на скалярный множитель (x/w y/w). Вообще двумерное представление точки (x y w) есть ее проекция на плоскость w=1 (рисунок 6).


Рисунок 6 – Получение двухмерного представления точки

 

Теперь точки плоскости можно описывать трехэлементным вектором, а матрицы преобразования должны иметь размер 3х3. В общем случае преобразование точки (x,y) в новую точку (x',y') можно представить следующим образом .

Уравнения переноса (сдвига), масштабирования и вращения записываются в виде матриц преобразования однородных координат следующим образом:

где Tx,Ty - величины сдвига, Sx,Sy - масштабные множители, - угол поворота.

Преимущество такого подхода (матричных формул) заключается в том, что совмещение последовательных элементарных преобразований при этом значительно упрощается. Рассмотрим следующую последовательность преобразований: масштабирование исходной точки P(x,y) при масштабных коэффициентах Sx и Sy, а затем смещение ее (после масштабирования) на Tx и Ty. Запишем преобразования масштабирования и переноса (сдвига) через однородные координаты точки:

Подставим первое уравнение во второе:

Две квадратные матрицы независимы от преобразуемой точки (x,y) и поэтому их можно перемножить между собой.

В результате получим

Таким образом, результирующая матрица, полученная произведением двух исходных матриц преобразования, представляет собой совмещение элементарных преобразований. Независимо от количества элементарных преобразований в последовательности, можно всегда произвести совмещение так, чтобы только одна матрица 3х3 представляла всю последовательность преобразований. Следует заметить, что если и представляют собой матрицы элементарных преобразований, то существует две возможные композиции: и . Однако, результаты таких преобразований будут различны, в силу того, что произведение матриц не является коммутативной операцией. Если геометрический объект состоит из большого количества вершин (точек), то с вычислительной точки зрения гораздо более эффективнее и проще применять композитную (результирующую) матрицу преобразования вместо того, чтобы последовательно использовать ("умножать на") одну за другой элементарные матрицы.

До сих пор мы рассматривали преобразования как перевод множества точек, принадлежащих объекту, в некоторое другое множество точек, причем оба эти множества описаны в одной и той же системе координат. Другими словами система координат у нас оставалась неизменной, а сам объект преобразовывался относительно начала координат. Эквивалентным способом описания преобразования является смена системы координат. Такой подход оказывается полезным и удобным, когда необходимо собрать вместе много объектов, каждый из которых описан в своей собственной локальной системе координат, и выразить (пересчитать) их координаты в одной глобальной (мировой) системе координат. Например, точка на рисунок 7 описана в четырех системах координат, и имеет соответствующие координаты: (11,10), (8,8), (12,10), (3,3)


Рисунок 7 – Описание точки в четырех системах координат

Преобразование из системы координат 1 в систему координат 2 есть ; из 2 в 3 есть ; из 3 в 4 есть . В общем случае преобразование переводит оси системы координат j в оси системы координат i. Если - точка, координаты которой заданы в системе координат j, то будет справедлива запись . Так, например, в рассматриваемом случае записывается в однородных координатах , а . И преобразование будет иметь вид:

Преобразование имеет обратное - преобразование из системы координат 2 в систему 1, причем . В рассматриваемом случае

Нетрудно проверить, что (единичная матрица). Кроме того будет справедливо и такое выражение . Другими словами, преобразование из системы координат 1 в систему координат 3 есть произведение двух матриц, первая из которых описывает преобразование из системы 1 в систему 2, а вторая – из системы 2 в систему 3.

Для введения трехмерной декартовой системы координат проведем три направленные взаимно перпендикулярные прямые линии, называемые осями, так чтобы они пересекались в одной точке – начале координат. Выберем на осях единицу измерения. Тогда положение любой точки пространства можно описать через координаты этой точки, которые представляют собой расстояния от начала координат до проекций точки на соответствующие оси. Такая система координат называется ортогональной. Таким образом, положение точки P в пространстве описывается ее координатами: P=(x,y,z). Взаимное расположение координатных осей в ортогональной системе трехмерного пространства может быть двух видов. При добавлении третьей оси к двумерной системе координат ось Oz можно направить как от наблюдателя в плоскость листа, так и от плоскости листа к наблюдателю.


Рисунок 8 – Добавление третьей оси к двумерной системе

В первом случае систему координат принято называть левосторонней, во втором – правосторонней. Известен способ определения типа системы по ладоням. Так для левой ладони большой (ось Y), указательный (ось Z) и средний (ось X) пальцы образуют левую тройку ортогональных векторов.

В трехмерном пространстве значительно возрастает разнообразие геометрических объектов. При работе на двумерной плоскости мы рассматривали отрезки, плоские кривые и многоугольники. При переходе в трехмерное пространство это многообразие примитивов можно рассматривать в разных плоскостях, а также здесь появляются пространственные кривые: . Помимо всего прочего в трехмерном пространстве присутствуют пространственные объекты – участки криволинейных поверхностей и объемные тела – параллелепипеды, эллипсы, тетраэдры и др.

При работе в трехмерном пространстве возникает проблема описания формы объектов. На практике получили широкое распространение три основных типа моделей трехмерных объектов: описание объекта поверхностями, сплошными телами и с помощью проволочной сетки. При первом подходе объект представляется в виде тонких поверхностей, под которым находится пустое незаполненное пространство. Примером такого объекта может выступать неразбитая скорлупа совершенно пустого внутри яйца. Поверхность объекта может быть описана различными математическими моделями. Поверхности, заданные в виде x=x(u,v),y=y(u,v),z=z(u,v), где u,v - параметры, изменяющиеся в заданных пределах, относятся к классу параметрических. Для одной фиксированной пары значений u,v можно вычислить положение только одной точки поверхности. Для полного представления всей поверхности необходимо с определенным шагом перебрать множество пар u,v из диапазона их изменений, вычисляя для каждой пары значение XYZ в трехмерном пространстве. Очень широкое распространение получили параметрические бикубические поверхности, с помощью которых достигается непрерывность составной функции и ее первых производных (функция, составленная из нескольких смежных бикубических участков, будет обладать непрерывностью и гладкостью в местах стыковки). Основным преимуществом параметрического описания является возможность построения объекта с очень сложной и замысловатой формой. Недостатком такого способа описания являются большие вычислительные затраты при построении поверхностей. Частным случаем параметрических поверхностей являются поверхности первого порядка. Из таких поверхностей можно составить описание формы объекта типа полигонального поля. Такими полями называют серию смежных многоугольников, не имеющих разрывов между собой. Каждое ребро такого поля является общим для смежных многоугольников. В результате чего составная функция, описывающая поверхность, обладает непрерывностью, а производная имеет разрывы в местах стыка участков поверхностей. В настоящее время полигональный способ описания трехмерных объектов является одним из самых распространенных и востребованных. Так, например, производительность современных графических процессоров (видеокарт) определяется количеством выводимых полигонов в единицу времени, как правило, в секунду.

Еще один способ описания поверхностей, который следует упомянуть, заключается в представлении формы объекта множеством отдельных точек, принадлежащих этой поверхности. Теоретически при бесконечном увеличении числа точек такая модель обеспечивает непрерывную форму описания. Точки, используемые для описания, должны располагаться достаточно близко друг к другу, чтобы можно было воспринять поверхность без грубых потерь и искажений. Поточечное описание поверхностей применяют в тех случаях, когда поверхность очень сложна, не обладает нужной гладкостью, а детальное представление многочисленных геометрических особенностей важно для практики.

Описание объекта сплошными геометрическими конструктивами (твердотельное моделирование) заключается в представлении сложного объекта в виде объединения простых объемных примитивов. Обычно такие примитивы включают кубы, цилиндры, конусы, эллипсоиды и другие подобные формы. Булевы операции над примитивами позволяют достигать объединения, вычитания и выделения общих частей примитивов. Структуры данных модели этого вида идентичны бинарному дереву, причем узлы (нетерминальные вершины) дерева являются операторами над примитивами, а листья – примитивами.

Следует также отметить метод описания объекта с помощью проволочной сетки (wire-frame), суть которого заключается в представлении поверхности серией пересекающихся линий, принадлежащих поверхности объекта. Как правило, в качестве таких линий принято использовать отрезки прямых. Достоинством проволочного представления является простой и эффективный способ построения объектов.

Для наилучшего восприятия формы объекта необходимо иметь его представление в трехмерном пространстве. Как правило, наглядное представление об объекте можно получить с помощью выполнения операций вращения и переноса, а также путем построения его проекций. Как и двумерном случае, существует три основных преобразования в трехмерном пространстве: перенос (изменение положения), изменение масштаба и вращение.

Преобразование перемещения точки трехмерного пространства P=(x,y,z) в новую точку P'=(x',y',z') можно записать следующим образом: x'=x+Tx, y'=y+Ty, z'=z+Tz, где Tx,Ty,Tz - величины перемещения в направлениях x,y,z соответственно. Определяя точку и операцию переноса как вектор-строку P=(x,y,z), P'=(x',y',z'),T=(Tx,Ty,Tz), преобразование сдвига можно записать в векторной форме: (x',y',z')=(x,y,z)+(Tx,Ty,Tz) или P'=P+T.

Точку трехмерного пространства P=(x,y,z) можно подвергнуть операции масштабирования (растяжения или сжатия) в Sx раз по оси абсцисс, в Sy раз по оси ординат и в Sz раз по оси аппликат. Полученная в результате преобразованная точка P'=(x',y',z') будет выражаться как: x'=x*Sx,y'=y*Sy,z'=z*Sz. Определив S как матрицу

выражения для масштабирования можно переписать в матричной форме:

или P'=P*S. Как и в двумерном случае операция масштабирования производится относительно начала координат. Поэтому если масштабируемые множители Sx,Sy,Sz>1, то преобразуемая точка отдаляется от начала координат, если же Sx,Sy,Sz<1 то точка приблизится к началу координат.

Трехмерные преобразования вращения являются более сложными, чем их двумерные аналоги. В данном случае необходимо дополнительно задать ось вращения. Рассмотрим сначала простейшие случаи, когда ось вращения совпадает с одной из координатных осей.

Найдем матрицу поворота вокруг оси OZ на угол y. Будем записывать матрицу преобразования для левосторонней системы координат. Следует отметить, что в левосторонней системе координат положительными будут повороты, выполняемые по часовой стрелке, если смотреть с конца положительной полуоси в направлении начала координат (рисунок 9).


Рисунок 9 – Ось вращения совпадает с осью Z

В данном случае ось поворота перпендикулярна к плоскости рисунка, и поскольку мы используем левостороннюю систему координат, то вращение вокруг оси OZ сводится к повороту точки на плоскости XOY на угол . При этом координата z точки вращения не изменяется. Таким образом, формулу поворота точки (x,y,z) вокруг оси OZ на угол можно записать следующим образом:

или в матричной форме

Изменим теперь положение координатных осей левосторонней системы координат таким образом, чтобы ось OY была направлена в плоскость рисунка. Тогда положительная полуось OZ будет направлена горизонтально вправо, а положительная полуось OX - вертикально вверх (рисунок 10).


Рисунок 10 – Ось вращения совпадает с осью Y

Получить формулу вращения точки вокруг оси OY на угол можно заменив x на z, y на x в формуле двумерного поворота. При этом координата точки y при таком вращении не изменяется. В результате чего формула вращения точки (x,y,z) вокруг оси OY на угол будет иметь следующий вид:

или в матричной форме

Аналогично поступаем с осью вращения OX. Изменим положение координатных осей так, чтобы ось OX была направлена в плоскость рисунка, ось OY - горизонтально вправо, ось OZ - вертикально вверх (рисунок 11).


Рисунок 11 – Ось вращения совпадает с осью X

 

Заменив в формуле двумерного поворота y на z, x на y, получим формулу вращения точки (x,y,z) вокруг оси OX на угол

или в матричной форме

Способ двумерного плоского вращения вокруг произвольной точки может быть обобщен на случай вращения вокруг произвольной оси трехмерного пространства. Пусть произвольная ось вращения задается вектором , причем - точка, определяющая начало вектора, а - конец вектора (рисунок 12)


Рисунок 12 – Произвольная ось вращения

Вращение вокруг задаваемой оси (вектора ) на угол выполняется в несколько этапов:

1. Перенос вектора так, чтобы начало вектора (точка ) совпала с началом системы координат. Это осуществляется с помощью операции сдвига T(-a,-b,-c) ;

2. Поворот вокруг оси OY на угол так, чтобы вектор (m,l,n) оказался в плоскости OYZ: ;

3. Поворот вокруг оси OX на угол так, чтобы вектор (m',l',n') совпал с осью OZ: ;

4. Поворот вокруг оси OZ на заданный угол ;

5. Выполнение преобразования, обратного, произведенному на шаге 3. Т.е. поворот вокруг оси OX на угол ;

6. Выполнение преобразования, обратного, произведенному на шаге 2. Т.е. поворот вокруг оси OY на угол ;

7. Выполнение преобразования, обратного, произведенному на шаге 1. Т.е. сдвиг на вектор (a,b,c): T(a,b,c)

Данный алгоритм вращения вокруг произвольной оси можно записать с помощью произведения серии элементарных матриц: , где V - исходная точка, V' - точка после поворота.

Остается определить чему равны углы поворотов и (рисунок 13).


Рисунок 13 – Углы поворотов

Из простых тригонометрических соотношений можно получить следующие формулы:

Как видно, операции трехмерного масштабирования и вращения могут быть реализованы с помощью умножения вектор-строки (точки) на матрицу преобразования. Операция же сдвига реализуется через сложение двух вектор-строк. Аналогично тому, как все двумерные преобразования (сдвиг, масштабирование и вращение) описываются матрицами размером 3х3 (через однородные координаты), трехмерные преобразования могут быть представлены в виде матриц размером 4х4. И тогда точка трехмерного пространства (x,y,z) записывается в однородных координатах как Wx,Wy,Wz,W, где . Если , то для получения трехмерных декартовых координат точки (x,y,z) первые три однородные координаты нужно разделить на W. Отсюда следует, что две точки и в пространстве однородных координат описывают одну и ту же точку трехмерного пространства в том и только том случае, когда для любой константы c не равной нулю. Таким образом, преобразование точки трехмерного пространства P=(x,y,z) в новую точку P'=(x',y',z') с использованием однородных координат можно записать как:

Уравнения трехмерного сдвига, масштабирования и вращения записываются в виде матриц преобразования однородных координат следующим образом:

где Tx,Ty,Tz - величины сдвига по осям OX, OY, OZ соответственно, Sx,Sy,Sz - масштабные множители по OX,OY,OZ соответственно, - матрицы вращения вокруг осей OX,OY,OZ на углы соответственно.

Как и в двумерном случае, матричный подход позволяет совместить два или более элементарных преобразования в одно. Таким образом, последовательное применение двух преобразований и может быть заменено применением одного преобразования T, причем матрица T будет равна произведению матриц преобразований и . Это легко можно увидеть на простом примере. Пусть точка (x,y,z) трансформируется в точку (x',y',z') с помощью преобразования : . Применяя затем преобразование к точке (x',y',z'), получим точку Теперь подставляя первое выражение во второе, получим: . Причем порядок применения преобразований должен быть сохранен при перемножении соответствующих матриц.

Процесс вывода трехмерной графической информации по существу является более сложным, чем соответствующий двумерный процесс. Сложность, характерная для трехмерного случая, обуславливается тем, что поверхность вывода не имеет графического третьего измерения. Такое несоответствие между пространственными объектами и плоскими изображениями устраняется путем введения проекций, которые отображают трехмерные объекты на двумерной проекционной картинной плоскости. В процессе вывода трехмерной графической информации мы задаем видимый объем в мировом пространстве, проекцию на картинную плоскость и поле вывода на видовой поверхности. В общем случае объекты, определенные в трехмерном мировом пространстве, отсекаются по границам трехмерного видимого объема и после этого проецируются. То, что попадает в пределы окна, которое само является проекцией видимого объема на картинную плоскость, затем преобразуется в поле вывода и отображается на графическом устройстве. В общем случае операция проекции преобразует точки, заданные в системе координат размерности n, в точки системы координат размерности меньшей, чем n. В нашем случае точка трехмерного пространства отображается в двумерное пространство. Проекция трехмерного объекта строится при помощи прямых проецирующих лучей, которые называются проекторами и которые выходят из центра проекции, проходят через каждую точку объекта и, пересекая картинную плоскость, образуют проекцию. На рисунке 14 представлены две различные проекции одного и того же отрезка и проекторы, проходящие через его конечные точки.


Рисунок 14 – Проекции одного отрезка с разными пректорами

 

Определенный таким образом класс проекций известен под названием плоских геометрических проекций, т.к. проецирование осуществляется на плоскость, а не на искривленную поверхность и в качестве проекторов используют прямые линии. Плоские геометрические проекции можно подразделить на два основных класса: центральные (перспективные) и параллельные (ортогональные). Различие между ними определяется соотношением между центром проекции и проекционной плоскостью. Так, если расстояние между ними, конечно, то проекция будет центральной, если же оно бесконечно, то – параллельной. При описании центральной проекции мы явно задаем ее центр проекции, в то время как для параллельной проекции мы указываем лишь направление проецирования. Центр проекции порождает визуальный эффект, аналогичный тому, к которому приводят фотографические системы и используется в случаях, когда желательно достичь некоторой степени реализма. Следует заметить, что размер центральной проекции объекта изменяется обратно пропорционально расстоянию от центра проекции до объекта. Параллельная проекция порождает менее реалистичное изображение, т.к. отсутствует перспективное "укорачивание" объекта. Проекция фиксирует истинные размеры объекта, и параллельные линии остаются параллельными.

В общем случае задача получения центральной проекции заключается в том, чтобы определить проекцию точки объекта, расположенную в произвольном месте трехмерного пространства, на некоторую плоскость в этом же пространстве, называемую картинной. Нахождение центральной проекции является частным случаем задачи определения пересечения луча L с плоскостью в трехмерном пространстве (рисунок 15)


Рисунок 15 – Пересечение луча с плоскостью

В машинной графике задача вычисления центральной проекции, как правило, сильно упрощена. В данном случае центр проекции, который также называют точкой зрения, находится на одной из осей системы координат, картинная (проекционная) плоскость перпендикулярна оптической оси. Как правило, точку зрения (центр проекции) располагают на оси OZ, тогда картинная плоскость будет параллельна плоскости OXY системы координат (рисунок 16).


Рисунок 16 – Центральная проекция

 

В нашем случае точка C=(0,0,c) - центр проекции (положение наблюдателя), плоскость z=0 - картинная плоскость. Пусть точка P=(x,y,z) имеет проекцию P'=(x',y',0). Рассмотрим два подобных треугольника CPQ и CP'Q', и запишем отношение катетов: . Рассмотрим два других подобных треугольника CQ'O и CQB, и запишем отношения катетов для них: . С другой стороны имеем: . Так как OQ'=x', BQ=x, P'Q'=y', PQ=y имеем

или после преобразований

Если теперь c стремится к бесконечности, то получим формулу параллельной проекции: .

Следующим шагом необходимо спроецированное изображение перевести в координаты экрана. Это можно проделать следующим образом:

где - середина экрана, l - количество пикселей в единице.

Существует связь однородных координат с операцией центральной и параллельной проекциями, которая может быть выражена так: .

Для перехода от однородных координат к обычным, необходимо разделить все компоненты точки на четвертую координату: .

Для параллельной проекции матрица преобразования будет иметь вид: .

Таким образом, шаг проецирования можно описать в терминах матричной операции умножения. В результате этого мы можем объединить вместе операции преобразования объекта (сдвиг, масштабирование, вращение) и операцию проецирования в одну общую матрицу преобразования. Аналогично можно поступить с приведением спроецированных точек к экранным координатам:

Таким образом, все операции преобразования объекта трехмерного пространства на картинную плоскость (экран) можно описать в терминах матричных умножений.

 

– Конец работы –

Эта тема принадлежит разделу:

Инженерная и компьютерная графика

Л А Трофимук... Инженерная и компьютерная графика Курс лекций...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математические основы компьютерной графики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития начертательной геометрии
  Начертательная геометрия занимает особое положение среди других наук. Она является лучшим средством развития у человека пространственного мышления и воображения. Начертател

Обозначения и символы языка начертательной геометрии
  При выполнении чертежей и изображений в начертательной геометрии приняты следующие условные обозначения: а) точки обозначаются прописными буквами латинского алфавита или ци

Методы проецирования
  +--Для решения основной задачи начертательной геометрии, т.е. для установления адекватного соответствия положения точки в пространстве и её изображения на плоскости, применяется кон

Плоскости общего и частного положения
а) Плоскость общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций (рисунок 14). Рисунок 1

Пересечение прямой и плоскости
  Это задача на нахождение общей точки, принадлежащей прямой и плоскости, которую называют также точкой встречи. а) Пересечение прямой с плоскостью частного

Построение линий пересечения плоскостей
  Прямая линии пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям. Для того чтобы определить общую точку, принадлежащую обеим плоск

Способ прямоугольного треугольника
  Этот способ применяется для определения натуральных величинотрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить нат

Определение углов наклона плоскости к плоскостям проекций
  Для определения углов наклона плоскости к плоскостям проекций пользуются линиями наибольшего ската и наибольшего наклона плоскости к плоскостям проекций. Линиями наибольшег

Способ вращения вокруг проецирующей оси
  Это частный случай параллельного перемещения. За траекторию движения точки принимается не произвольная линия, а дуга окружности, центр которой находится на оси вращения, а радиус ра

Способ параллельного перемещения
  Параллельным перемещением фигуры в пространстве называют такое ее перемещение, при котором все точки фигуры передвигаются в плоскостях уровня. Этот способ является частным случаем с

Способ вращения вокруг прямых уровня. Совмещение
Этот способ обычно применяют для определения истинных размеров плоских фигур. За ось вращения принимают горизонталь или фронталь плоскости, поэтому данный способ называют вращением вокруг горизонта

Способ замены плоскостей проекций
  Сущность этого способа состоит в том, что положение фигуры в пространстве не меняется, а вводится новая система плоскостей проекций. Новая плоскость проекции выбирается перпендикуля

Плоские кривые линии
Кривая – это множество точек пространства, координаты которых являются функциями одной переменной. Термин «кривая» в разных разделах математики определяется по разному. В начертательной геометрии к

Конические сечения
  Поверхность конуса является универсальной поверхностью, при сечении которой можно получить все виды плоских кривых - окружность, эллипс, параболу и гиперболу. Если же секущ

Способы образования поверхностей
  Мир поверхностей очень разнообразен. Они играют огромную роль в науке, архитектуре и технике. В математике под поверхностью подразумевается непрерывное множество точек, между коорди

Многогранники
  Линейчатые поверхности поступательного движения – все гранные поверхности, у которых образующей является прямая линия, направляющей – ломаная. Гранная поверхность представляет из се

Пространственные кривые линии
  Многие положения из рассмотренного по отношению к плоским кривым могут быть отнесены и к пространственным. Вместе с тем имеются различия. Так, если для плоской кривой можно провести

Поверхности вращения
  Поверхностью вращения общего вида называется поверхность, которая образуется произвольной кривой (плоской или пространственной) при ее вращении вокруг неподвижной о

Частные виды поверхностей вращения
  Существует широкий класс поверхностей вращения, у которых образующей является прямая линия. Из них наиболее известны цилиндрическая и коническая. Цилиндрическая поверхность образует

Построение сечения призмы плоскостью частного положения
Геометрическая фигура, получающаяся в результате пересечения многогранника плоскостью, называется сечением многогранника. Сечение представляет собой плоский многоугольник с внутренней областью. В ч

Построение сечения пирамиды плоскостью частного положения
  Возьмем правильную четырехгранную пирамиду и построим ее сечение фронтально-проецирующей плоскостью. Находим проекции опорных точек – точек пересечения ребер с секущей плоскостью. Н

Построение сечения цилиндра
  Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым. Линия сечения строится также при

Построение сечения конуса
  Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым. На рисунке 8 построено сечение конуса фронтально-проецир

Построение сечения сферы
  Рассмотрим пересечение сферы горизонтально-проецирующей плоскостью Т (рисунок 10). Секущая плоскость всегда рассекает сферу по окружности, которая проецируется в виде отрезка прямой

Построение сечения топографических поверхностей
  Кривые поверхности в проекциях с числовыми отметками изображают проекциями горизонталей или проекциями направляющей и образующей. На лесных чертежах часто встречаются топографически

Общий способ построения линии пересечения поверхностей
  Общий способ построения линии пересечения одной поверхности другою заключается в построении этой линии при помощи секущих поверхностей. При этом, пользуются вспомогательными секущим

Случаи взаимного пересечения поверхностей
  При решении задач на взаимное пересечение поверхностей требуется, как правило, найти линию, общую для двух или более поверхностей. В случае пересечения гранных поверхностей - это ло

Гранные поверхности с вырезом
  Построение линии пересечения пирамиды SABC с призматическим вырезом (рисунок 4) начинается с выбора секущих плоскостей. В качестве вспомогательных секущих плоскостей исполь

Поверхности вращения с вырезом
  Построим недостающие проекции сферы, имеющей сквозное отверстие (рисунок 7). Рисунок 7 - Сфера с вырезом

Способ сфер
  Этот метод вытекает из свойств, присущих поверхностям вращения: если центр секущей сферы находится на оси поверхности вращения, то сфера пересечет данную поверхность по окружностям,

Теорема Монжа
  Если две пересекающиеся поверхности вращения можно описать вокруг третьей, то линия пересечения в этом случае распадется на две плоские кривые. Примеры такого пересечения п

Условное изображение линии перехода
1 Построение линии среза   Линии среза получаются в пересечении деталей, состоящих из поверхности вращения, плоскостями, параллельными оси в

Поверхность и ее развертка
  Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с плоскостью. Построение разверток поверхностей различных деталей находит ш

Развертка поверхности многогранников
  Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью. Существуют два способа постро

Развертка цилиндрической и конической поверхностей
  Разверткой боковой поверхности прямого кругового цилиндра является прямоугольник, одна сторона которого равна длине окружности основания цилиндра 2πR, где R – радиус окружности

Развертка сферической поверхности
  Развертка сферической поверхности может быть выполнена на чертеже лишь приближенно, так как совместить такую поверхность с плоскостью без разрывов и складок невозможно. При

Исторические предпосылки
  Не счесть ещё числа вещей и явлений, сущности которых мы себе пока не представляем. К таким понятиям относится «стандарт». Часто можно слышать: «Нет, эта вещь мне не подходит, уж сл

А если гайки одинаковые ввесть
Сломалась – Сейчас же новая есть И нечего долго разыскивать тут: Бери любую – Хоть эту, хоть ту. И не только в гайке наше счастье – Надо всем м

Международный стандарт
Развитие международной торговли обусловило необходимость согласования требований к продукции, установления единых методов и правил оценки её качества, способов измерений, условий упаковки, транспор

Виды и типы схем
ГОСТ 2.701 устанавливает виды и типы схем, их обозначение и общие требования к выполнению. Встречаются в практике комбинированные, совмещенные в том числе, и другие схемы, не перечисленные в ГОСТ 2

Правила выполнения схем
Схемы выполняют без соблюдения масштаба и без учета действительного пространственного расстояния частей изделия. Расположение условных графических обозначений элементов и линий связи на сх

Гидравлические и пневматические схемы
ГОСТ 2.704 устанавливает правила выполнения трех типов гидравлических и пневматических схем: структурных, принципиальных и соединений. Рассмотрим правила выполнения принципиальных схем. На

Электрические схемы
ГОСТ 2.702 устанавливает правила выполнения электрических схем (структурных, функциональных, принципиальных, соединений, подключения, общих, расположения). Рассмотрим правила выполнения принципиаль

Разрезы
Разрез - изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что получается в секущей плоскости и что расположено за ней. В соответст

Сечения
Сечение - изображение фигуры, получающееся при мысленном рассечении предмета одной или несколькими плоскостями. В отличие от разреза, на сечении показывают то, что расположено непосредстве

Наклонные сечения, их построение и определение натуральной величины
  В инженерной практике приходится строить наклонные сечения. Определение натуральных размеров сечения обычно выполняются методом замены плоскостей проекций без обозначения систем пло

Основные требования
ГОСТ 2.307 устанавливает правила нанесения размеров и предельных отклонений на чертежах и других технических документах на изделия всех отраслей промышленности и строительства. Ниже приводятся неко

Размерные и выносные линии
  Размеры на чертежах указывают размерными числами и размерными линиями. При нанесении размера прямолинейного отрезка размерную линию проводят параллельно этому отрезку, а выносные ли

Стрелки
Величины элементов стрелок, ограничивающих размерную линию, выбирают в зависимости от толщины линий видимого контура и вычерчивают их приблизительно одинаковыми на всем чертеже. Форма стрелок и при

Размерные числа
  Размерные числа наносят над размерной линией возможно ближе к ее середине (рисунок 15).Способ нанесения размерного числа при различных положениях размерных линий (стрелок) на чертеж

Размеры радиусов
  При нанесении размера радиуса перед размерным числом помещают прописную букву R (рисунок 19).Если при нанесении размера радиуса дуги окружности необхо

Размеры одинаковых и однотипных элементов
  Размеры нескольких одинаковых элементов изделия (отвер­стия, фаски, пазы, спицы и пр.), как правило, наносят один раз с указанием на полке линии-выноски количества этих эле­ментов (

Простановка размеров на рабочих чертежах
В машиностроении исключительно большое значение имеет правильно разработанные и хорошо оформленные рабочие чертежи деталей. рабочий чертеж – это конструкторский документ, который совокупно

Способы простановки размеров
В машиностроении в зависимости от выбора измерительных баз применяют три способа нанесения размеров элементов деталей: цепной, координатной и комбинированный (рис. 7). 1. Цепной способ

Размеры формы и положения
какую бы сложную форму не имела деталь, конструктор выполняет ее как совокупность простейших геометрических тел или их частей.

Наглядное изображение предметов
Суть аксонометрического чертежа в том, что сначала оригинал жестко связывают с декартовой системой координат OXYZ, ортогонально проецируют его на одну из плоскостей проекций

Прямоугольная изометрическая проекция
  Аксонометрические оси в прямоугольной изометрии расположены под углом 120° между собой (рисунок 3). Для определения коэффициентов искажения воспользуемся доказательством, что сумма

Прямоугольная диметрическая проекция
  В прямоугольной диметрии аксонометрическая ось X' расположена под углом 7010', а ось Y' - под углом 41025' к горизонтальной прямой (рисунок 6). Для диметрическ

Косоугольная диметрическая проекция
  В ряде случаев при построении аксонометрии предметов, ограниченных лекальными кривыми или имеющими много окружностей и дуг, расположенных в одной плоскости на детали, преимущество о

Решение производственных задач в аксонометрии
  В ряде случаев при изготовлении соединений используют наглядное изображение соединения (рисунок 13), чертеж и наглядное изображение одной из деталей соединения (потайного шипа, рису

Сборочные единицы
  Сборочная единица – изделие, составные части которого подлежат соединению между собой на предприятии-изготовителе сборочными операциями (свинчиванием, сочленением, клепкой, с

Комплекты
  Комплект – два или более изделия, не соединенных на предприятии-изготовителе сборочными операциями и представляющих собой набор изделий, имеющих общее эксплуатационное назна

Комплектность конструкторских документов
  К конструкторским документам (именуемым в дальнейшем словом «документы») относят графические и текстовые документы, которые в отдельности или совокуп

Основные элементы резьбы
  Резьбой называют поверхность, образованную при винтовом движении плоского контура по цилиндрической или конической поверхности. · Ось резьбы – ось относительно которой обра

Изображение резьбы (ЕСКД ГОСТ 2.311-68)
  Резьбу изображают: а) на стержне - сплошными основными линиями по наружному диаметру резьбы и сплошными тонкими линиями - по внутреннему диаметру.

Обозначение резьб
Обозначение резьб указывают по соответствующим стандартам на размеры и предельные отклонения резьб и относят их для всех резьб, кроме конической и трубной цилиндрической, к наружному диаметру, как

Типы резьб
Метрическая резьба является основным типом крепежной резьбы. Профиль резьбы установлен ГОСТ 9150–81 и представляет собой равносторонний треугольник с углом профиля α = 60°. Профиль резьбы н

Нанесение размеров резьбы
Нанесение размеров резьбы сведено в таблицу 1 Резьбы.   Таблица 1- Резьбы Тип резьбы Условное обозначе­ние типа резьбы

Изображения болтового и шпилечного соединений
  Рисунок 5 – Болтовое соединение  

Структура условного обозначения стандартного шва
Структура условного обозначения стандартного шва приведена на схеме (рисунок 9).     Рисунок

Упрощения при обозначении
  1) При наличии на чертеже швов, выполняемых по одному и тому же стандарту, его указывают в технических требованиях по типу: «Сварные швы по ГОСТ …», обозначение рисунка а примет вид

Параметры и характеристика шероховатости
В соответствии с ГОСТ 2789-73* под шероховатостью поверхностей понимают совокупность неровностей поверхности, измеряемую в микрометрах (мкм) на определенной базовой длине . Базовая длина измеряется

Обозначение шероховатости поверхности
Структура обозначения шероховатости приведена на рисунке 3    

Нанесение обозначений шероховатости поверхностей на чертежах
Общие сведения. Обозначение шероховатости поверхностей деталей машин, а также правила нанесения их на чертежах регламентированы ГОСТ 2.309-73 и располагают на изображениях изделия на линиях контура

Этапы деталирования
Деталирование целесообразно выполнять по двум основным этапам: 1) подготовительная работа; 2) выполнение заданий па чертежной бумаге. В объем подготовительной работы входит: 1) чт

Выбор числа изображений
  Следует помнить, что количество изображений (видов, разрезов, сечений) должно быть минимальным, но обеспечивающим полное представление о форме детали. Применение знаков диа

Выполнение изображений на форматах
  В зависимости от масштаба и числа изображений с учетом места для размеров и надписей намечается формат бумаги по стандарту для каждого чертежа. Масштаб изображений может бы

Заполнение граф в спецификации
  В графе «Формат» указывают размеры форматов и листов. Основные форматы АО, А1, А2, A3, А4, А5 по ГОСТ 2301-68*. В случае, когда документ выполнен на одном листе дополнительного форм

Лекция 21. Основы компьютерной графики. Пакеты программ векторной и растровой графики. Сферы их применения
План лекции:   1. Стандарты машинной графики 2. Основы компьютерной графики 3. Классификация пакетов машинной графики 4. Основные сведения о програ

Microsoft PhotoDraw.
Особенности программы Microsoft PhotoDraw: 1. Совмещение как векторных, так и растровых средств создания и обработки изображений. Фирма Microsoft создала PhotoDr

Перечислите пакеты машинной графики
5 Назовите достоинства программы Photo-Paint. 6 Назовите преимущества программы Adobe Photoshop.    

Библиографический список
Основная литература:   1 Королев, Ю. И. Начертательная геометрия [Текст]: учеб. для вузов / Ю. И. Королев. – 2-е изд. – СПб. : Питер, 2010. – 256 с. 2 Трофимук, В. Н

Перечень ключевых слов
  1 Аксонометрические проекции 20 Линия: 2 Базы размерные: связи; конструкторская;

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги