ЛЕКЦИЯ I: Введение в курс гистологии. История науки. Методы исследования

ЛЕКЦИЯ I:

Введение в курс гистологии. История науки. Методы исследования.

Цитология. План: 1. Предмет гистологии. Разделы. 2.История науки. 3. Методы исследования. 4. Основы цитологии.

1. Предмет гистологии. Разделы.
Гистология ("гистос" греч. -ткань) - в узком понимании это - наука или учение о тканях. В последнее 10-летие содержание гистологии переросло такого узкого понимания и включает в себя изучение закономерностей микроскопического развития, строения организма на разных уровнях его организации - на субклеточном, клеточном, тканевом, органном, с учетом их функций.
Курс гистологии условно разделен на следующие разделы:
1. Цитология - наука о клетке.
2. Эмбриология - наука о развитии, от зарождения до полного формирования организма.
3. Общая гистология - наука обобщих закономерностях, присущих тканям.
4. Частная гистология - изучает строение, развитие органов и систем.
Такое разделение в известной мере условно и продиктовано удобством изучения материала. На самом деле клетка не может существовать вне тканей, также как ткани не существуют вне органов, а органы вне целого организма.
Основным методом исследования в гистологии является микроскопирование (световая, специальные методы микроскопирования, электронная), поэтому формирование гистологии как самостоятельной науки тесно связано с историей изобретения микроскопа.
Первый микроскоп был сконструирован в 1609-10 гг Галилео Галилеем. Для научной работы этот микроскоп не употреблялся и был утерян, но тем не менее получил известность. В 1617-19 гг при дворе английского короля Якова I Корнелий Дреббел сконструировал аналогичный микроскоп - который также не послужил для научной работы и был утерян.

На микроскоп очень долгое время смотрели как на занятную игрушку, они широко рекламировались и быстро распространились по всей Европе, в первую очередь по аристократическим салонам. Первые микроскописты-любители в основном были не биологи, рассматривали под микроскопом ради забавы все что попадется под руки. Но тем не менее они сделали много интересных и важных открытий. Настоящих научных исследований, проведенных с помощью микроскопа профессиональными учеными, в 17-18 веках было очень мало.
Первые исследования принадлежат секретарю Лондонского королевского научного общества Роберту Гуку (1635-1703). Результаты своих микроскопических исследования он опубликовал в 1665 г в монографии"Микрография или физиологическое описание мельчайших тел, исследованных при помощи микроскопа". Р.Гук изучал в числе многих других обьектов и тонкие срезы растений. Изучая срезы пробки Гук обнаружил замкнутые пузырьки - ячейки и назвал их "клетками" (cellula). Гук задался вопросом - насколько широко распространено ячеистое строение, не является ли оно "схемой", принципом, распространяющийся на всех растений.
И начал изучать срезы стеблей различных растений и обнаружил аналогичные ячейки, разграниченные перегородками. Отличие этих ячеек от ячеек пробки состояло в том, что они не были пустыми, а были заполнены соком. Таким образом Р.Гук сформировал представление о клетке, как о пузырьке, полностью замкнутом со всех сторон; он же установил факт широкого распространения клеточного строения растительных тканей. После опубликования выше упомянутой монографии Р.Гук к микроскопическим наблюдениям больше не возвращался.
К микроскопистам-любителям можно отнести и знаменитого Антона-Ван-Левенгука - манафактурного торговца по профессии. Он вел наблюдения в продолжении более чем 50 лет и сообщал результаты Лондонскому королевскому научному обществу. Впоследствие в 1680 г он был избран почетным членом этого общества и в 1696 г его наблюдения были обобщены в книге "Тайны природы". Левенгук открыл мир микроскопических животных - инфузорий, впервые описал эритроциты и сперматозоиды.

 

Каспар Фридрих Вольф - в 1759 г в диссертации "Теория происхождения" впервые попытался обьяснить возникновение новых растительных клеток при росте. Считал, что из уже имеющихся клеток-мешочков выдавливается жидкое вещество в виде капельки, поверхность капли затвердевает и капля превращается в новую клетку-мешочек.
Ксавье Биша (фр. анатом, 1771-1802) - еще в 1801 г дал классификацию тканей на макроскопическом уровне - выделял 21 тканей; органы образуются путем комбинации различных тканей.
Ян Пуркинье и его школа в 1830-45 гг использовали окраку (индиго), просветление срезов бальзамом, создали микротом; все это позволило изучать клетки животных тканей под микроскопом.
Нем. ученые Лейдиг и Келликер в 1835-37 гг попытались создать первую микроскопическую классификацию тканей.
Матиас Шлейден (нем.) в 1838 г создал теорию цитогенеза.
Теодор Шванн (нем.) в 1839 г основываясь на теории цитогенеза Шлейдена создал клеточную теорию:
1) все ткани растений и животных состоят из клеток;
2) все клетки развиваются по общему принципу;
3) каждой клетке присуща самостоятельная жизнедеятельность (организм - арифметическая сумма клеток);
Рудольф Вирхов (нем.) - оказал большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке:
1. Всякая клетка - от клетки, и только от клетки.
2. Клетка - самый мелкий морфологический элемент живого и только из их совокупности слагаются все живые существа, вне клетки нет жизни.
3. Организм - государство клеток, совокупность отдельных самостоятельных единиц, поставленных в тесную взаимозависимость друг от друга.
4. Создал теорию "целюлярной патологии" - т.е. болезнь обьяснял как нарушение строения и функции клеток (а до него господствовала "гуморальная теория").
Э.Страсбургер (1884) выдвинул гипотезу о значении ядра как носителя наследственных свойств. Предложил термины профаза, метафаза,анафазаб гаплоидное и диплоидное число хромосом - т.е. изучал процесс митоза.
Рихард Гертвиг в 1903 г сформулировал закон постоянства ядерно-плазменного отношения: Масса ядра : масса плазмы = постоянная величина т.е. ядру определенной величины соотвествует определенный обьем цитоплазмы.
Первые микроскопы в Россию были привезены Петром I. В 1698 г Петр I посетил Ливенгука, который демонстрировал ему кровообращение в капиллярах угря. Петр I закупил в Голландии партию микроскопов и вывез в Россию опытного мастера по шлифовке оптических стекол Л.Шеппера. При академии наук в Петербурге под руководством Л.Шеппера было организовано изготовление микроскопов, но господа академики не хотели и не умели ими пользоваться.
Началом развития русской гистологии надо считать 30-ые годы 19 века, когда гистология преподавалась на кафедрах анатомии и физиологии. В 60 гг 19 в гистология выделилась в отдельные кафедры. Первая кафедра гистологии создавалась в МГУ - зав.каф. А.И.Бабухин. Школа Бабухина занималась вопросами гистогенеза и гистофизиологии мышечной и нервной ткани.
Почти параллельно открылась кафедра гистологии в Питербургской Медико-хирургической академии. К этой школе относятся К.Э.Бэр - эмбриолог, НМ Якубович - заслуги при изучении ЦНС, МД Лавдовский - автор первого учебника по гистологии.
Ковалевский АО - один из основоположников сравнительной эмбриологии, экспериментальной и эволюционной гистологии; установил единый план развития многоклеточных; обосновал теорию зародышевых листков, как образований лежащих в основе единства развития всех млекопитающих.
Основатель кафедры гистологии в Киевском универ-те - ПИ Перемежко (1968). Киевская школа достигла успехов при изучении развития зародышевых листков, закладки и развития многих органов.
Родоначальник Казанской школы - ИА Арнштейн - занимались проблемой нейрогистологии.
Говоря о вкладе отечественных исследователей в гистологию в советский период нужно отметить:
1. Академик АА Заварзин - предложил теорию "параллельных рядов в тканевой эволюции" - эволюция тканей у разных типов и классов животных происходит сходно, параллельными рядами, поэтому у разных животных ткани с родственными функциями имеют сходное строение.
2. НГ Хлопин - создал теорию "дивергентной эволюции тканей" - ткани развиваются в эволюции и онтогенезе дивергентно, путем расхождения признаков. Поэтому в каждой из 4-х основных группах тканей предлагается выделить подгруппы или типы тканей по их происхождению, источнику развития.
Кафедра гистологии БГМУ создана в 1934 году под руководством профессора Николая Илларионовича Чурбанова. Сотрудники кафедры занимались изучением нейроэндокринного аппарата пищеварительной системы, разработкой гематологических нормативов для различных возрастных групп населения республики Башкортостан, влиянием производственных факторов на организм матери и плода в системе мать:плод, проблемой регенерации мышечных тканей.
Методы исследования в гистологии.
Как любая наука гистология располагает своим арсеналом методов исследований:
I. Основной метод - микроскопирование.
А. Световая микроскопия - исследования обычным световым мик-пом.
Б. Спец-ые методы микроскопирования:
- фазовоконтрастный микроскоп (для изуч. живых неокраш-х обьектов)
-темнопольный микроскоп (для изуч. живых неокраш-х обьектов)
-люминесцентный мик-п (для изуч. живых неокраш-х обьектов)
-ультрафиолетовый мик-п (повышает разрешающую способность м-па)
-поляризационный мик-п(для иссл. обьектов с упорядочонным распола-
жением молекул - скелет. муск-ра, коллагеновые волокна и т.д.)
-интерфекренционная микроскопия (для опред-я сухового остатка в
клетках, определение толщины обьектов)
В. Электронная микроскопия:
-трансмиционная (изучение обьектов на просвет)
-сканирующий (изучение поверхности обьектов)
II. Специальные (немикроскопические) методы:
1.Цито- или гистохимия - суть заключается использовании строгоспецифических химических реакций с светлым конечным продуктом в клетках и тканях для определения количества различных веществ(белков, ферментов, жиров, углеводов и т. д.). Можно применить на уровне светового или электронного микроскопа.
2. Цитофотометрия - метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т.д.
3. Авторадиография - вводят в организм вещества, содержащие радиоактивные изотопы химических элементов. Эти вещества включаются в обменные процессы в клетках. Локализацию, дальнейшие перемещения этих веществ в органах определяются на гистопрепаратах по излучению, которое улавливается фотоэмульсией, нанесенной на препарат.
4. Рентгентоструктурный анализ - позволяет определить количество химических элементов в клетках, изучить молекулярную структуру биологических микрообьектов.
5. Морфометрия - измерение размеров биол. структур на клеточном и субклеточном уровне.
6. Микроургия - проведение очень тонких операций микроманипулятором под микроскопом (пересадка ядер, введение в клетки различных веществ, измерение биопотенциалов и т.д.)
6. Метод культивирования клеток и тканей - в питательных средах или в диффузионных камерах, имплантированных в различные ткани организма.
7. Ультрацентрофугирование - фракционирование клеток или субклеточных структур путем центрофугирования в растворах различной плотности.
8. Экспериментальный метод.
9. Метод трансплантации тканей и органов.

Ц И Т О Л О Г И Я
Формы организации живой материи:
I. Доклеточная:
1) вирусы: а. ДНК-содержащие б. РНК-содержащие
Основу составляет ДНК или РНК, окруженная оболочкой. В окружающей среде могут сохраниться определенное время, но самостоятельно в окружающей среде размножаться не могут - размн. только в клетке-хозяине.
2) бактериофаги.
II. Клеточная форма:
1) Прокариоты ("доядерные"):
а) бактерии - одноклеточные организмы. Имеют хорошо выраженную
оболочку, небольшое разнообразие органоидов, деление - прямое.
Наследственный материал не обособлен, диффузно разбросан по
всей цитоплазме - т.е. ядра еще нет = доядерные.
б) сине-зеленые водоросли - сходны с бактериями.
2) Эукариоты ("хорошое ядро") - клетки имеют хорошо выраженное ,
обособленное ядро; большое разнообразие органоидов; размножение
путем митоза. Эукариоты - клетки растений и животных организмов.
III. Неклеточная форма:
1) межклеточное вещество соед-х тканей (волокна, основное вещество).
2) синцитий - клетки соединены цитоплазматическими мостиками, по
которым из цитоплазмы одной клетки можно перейти в другую клет-
ку. Пример в челов. орг-ме - сперматогонии на стадии размножения.
3) симпласт - это огромная единая масса цитоплазмы, где разбросаны
сотни тысяч ядер и органоидов. Пример - скелетная мускулатура и
симпластический трофобласт в хорионе и ворсинках хориона в пла-
центе.
Основные положения современной клеточной теории:
I. Клетка - наименьшая элементарная единица живого, вне которой нет жизни.
II. Клетки гомологичны - т.е. при всем богатом разнообразии все клетки растений и животных построены по единому общему принципу.
III. Клетка от клетки и только от клетки, т.е. новая клетка образуется путем деления исходной клетки.
IV. Клетка - часть целостного организма. Клетки обьединены в системы тканей и органов, из системы органов - целый организм. При этом совокупность всех свойств каждого вышестоящего уровня больше, чем простая сумма свойств его составляющих, т.е. свойства целого больше, чем простая сумма свойств составляющих частей этого целого.
Клетка - это элементарная живая система, состоящая из цитоплазмы, ядра, оболочки и являющаяся основой развития, строения и жизнедеятельности животных и растительных организмов.
Клетка состоит из ядра, цитоплазмы и оболочки (цитолемма).
Ядро - часть клетки, являющееся хранилищем наследственной информации.
Окружено кариолеммой (два листка элементарной биомембраны), имеющей поры. В ядре содержится кариоплазма, основу которой составляет ядерный белковый матрикс (структурная сеть из негистоновых белков). В в ядерном белковом матриксе располагается хроматин - ДНК в комплексе с гистоновыми и негистоновыми белками. Хроматин может быть деконденцированным (разрыхленным, светлым) - эухроматин ("эу"- хороший) и наоборот, конденсированным (плотно упакованным, темным) - гетерохроматин. Чем больше эухроматина, тем интенсивнее синтетические процессы в ядре и цитоплазме, и наоборот, преобладание гетерохроматина показывает на снижение синтетических процессов, на состояние метаболического покоя.
Ядрышко - самая плотная, интенсивно окрашивающаяся структура ядра с диаметром 1-5 мкм - является производным хроматина, одним из его локусов. Функция: образование рРНК и рибосом.
Цитолемма - это элементарная биологическая мембрана покрытая снаружи более или менее выраженным гликокаликсом. Основу элементарной биологической мембраны составляет бимолекулярный слой липидов, обращенных друг к другу гидрофобными полюсами; в этот бимолекулярный слой липидов вмонтированы интегральные (пронизывают всю толщу липидов), полуинтегральные (между молекулами липидов наружного или внутреннего слоя) и периферические (на внутренней и наружной поверхности бимолекулярного слоя липидов) белковые молекулы.
Гликокаликс - это гликолипидный и гликопротеиновый комплекс на наружной поверхности цитолеммы, содержит сиаловую кислоту; снижает скорость диффузии веществ через цитолемму, тамже локализуются ферменты участвующие во внеклеточном расшиплении веществ.
На наружной поверхности цитолеммы могут иметься рецепторы:
- "узнавание" клетками друг друга;
- рецепция воздействия химических и физических факторов;
- рецепция гормонов, медиаторов, А-гена и т.д.
Функции цитолеммы:
- разграничительная;
- активный и пассивный транспорт веществ в обе стороны;
- рецепторные функции;
- механический контакт с соседними клетками.
Гиалоплазма - это гомогенная, под микроскопом бесструктурная масса; по химической природе представляет собой коллоидную систему и состоит из дисперсной среды (вода и растворенные в ней соли) и дисперсной фазы (взвешанные в дисп. среде мицеллы белков, жиров, углеводов и некоторых других органических веществ); эта система может переходит из состояния золь в гель.
Компартменты - это структуры, находящиеся в гиалоплазме, имеющие определенное строение (форму и размеры), т.е. видимые под микроскопом.
К компартментам относятся органоиды и включения.
Органоиды - постоянные структуры цитоплазмы, имеющие определенное строение и функции. Органоиды классифицируются по строению и по функцию. По строению различают:
1. Органоиды общего назначения (имеются в большем или меньшем количестве во всех клетках, обеспечивают функции необходимые всем клеткам):
митохондрия, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, клеточный центр, пероксисомы.
2. Органоиды специального назначения - (имеются только в клетках высокоспециализированных тканей и обеспечивают выполнение строгоспецифических функций этих тканей): в эпителиальных клетках - реснички, микроворсинки, тонофибриллы; в нейральных тканях - нейрофибриллы и базофильное вещество; в мышечных тканях - миофибриллы.
По строению органиоды подразделяются:
1. Мембранные - эндоплазматическая сеть, митохондрии, пластинчатый комплекс, лизосомы, пероксисомы.
2. Немембранные - рибосомы, микротрубочки, центриоли, реснички.
Строение и функции органоидов:
1. Митохондрии - структуры округлой, овальной и сильновытянутой эллепсоидной формы. Окружены двойной элементарной мембраной: наружная элементарная мембрана имеет ровную поверхность, внутренняя мембрана образует складки - кристы; полость внутри внутренней мембраны заполнена матриксом - гомогенная бесструктурная масса. Функция: митохондрии называют"энергетическими станциями" клетки, т.е. там происходит аккумулирование энергии в виде АТФ, выделяемое при "сжигании" белков, жиров, углеводов и др. веществ. Короче, митохондрии - поставщики энергии.
2. Эндоплазматическая сеть(ЭПС) - это система (сеть) внутриклеточных канальцев, стенки которых состоит из элементантарных биологических мембран. Различают ЭПС гранулярного типа (в стенки ЭПС вмонтированы гранулы = рибосомы) - с фукнцией синтеза белков, и агранулярного типа (канальцы без рибосом) - с функцией синтеза жиров, липидов и углеводов.
3. Пластинчатый комплекс (Гольджи) - система наслоенных друг на друга уплощенных цистерн, стенка которых состоит из элементарной биологической мембраны, и расположенных рядом пузырьков (везикул). Располагается обычно над ядром, и выполняет функцию - завершение процессов синтеза веществ в клетке, расфасовка продуктов синтеза по порциям в везикулы, ограниченных элементарной биологической мембраной. Везикулы в дальнейшем транспортируются в пределах данной клетки или выводятся экзоцитолизом за пределы клетки.
4.Лизосомы - структуры округлой или овальной формы, окружены элементарной биологической мембраной, содержащие внутри полный комплект протеолитических и других литических ферментов. Функция - обеспечивают внутриклеточное переваривание, т.е. последнюю фазу фаго(пино)цитоза.
5.Пироксисомы - мелкие структуры округлой или овальной формы, окруженные элементарной базальной мембраной, содержащие внутри пероксидазу, обеспечивающая обезвреживание перекисных радикалов - продуктов обмена веществ, подлежащих удалению из организма.
6.Клеточный центр - органоид обеспечивающий двигательную функцию (растаскивание хромосом) при делении клетки. Состоит из 2-х центриолей; каждая центриоля представляет собой цилиндрическое тело, стенка которого образована 9-ю парами микротрубочек расположенных по периферии цилиндра вдоль и 1-й парой микротрубочек в центре. Центриоли располагаются по отношению друг к другу перпендикулярно. При делении клетки центриоли располагаются на двух противоположных полюсах и обеспечивают растаскивание хромосом к полюсам.
7.Реснички - органоиды, аналогичные по строению и функцию с центриолями, т.е. имеют сходное строение и обеспечивают двигательную функцию. Ресничка представляет собой вырост цитоплазмы на поверхности клетки, покрытый цитолеммой. Вдоль этого выроста внутри располагаются 9 пар микротрубочек, расположенных параллельно друг к другу, образуя цилиндр; в центре этого цилиндра вдоль, а следовательно и в центре реснички, располагается еще 1 пара центральных микротрубочек. У основания этого выроста-реснички, перпендикулярно к ней, располагается еще одна аналогичная структура.
8.Микроворсинки - это выросты цитоплазмы на поверхности клеток, покрыты снаружи цитолеммой, увеличивают площадь поверхности клетки. Встречаются в эпителиальных клетках, обеспечивающих функцию всасывания (кишечник, почечные канальцы).
9,Миофибриллы - состоят из сократительных белков актина и миозина, имеются в мышечных клетках и обеспечивают процесс сокращения.
10.Нейрофибриллы - встречаются в нейроцитах и представляют собой совокупность нейрофибрилл и нейротрубочек. В теле клетки располагаются беспорядочно, а в отростках - параллельно друг к другу. Выполняют функцию скелета нейроцитов (т.е. функция цитоскелета), а в отростках участвуют в транспортировке веществ от тела нейроцитов по отросткам на периферию.
11.Базофильное вещество - имеется в нейроцитах, под электронном микроскопом соответствует ЭПС гранулярного типа, т.е. органоида, ответственного за синтез белков. Обеспечивает внутриклеточную регенерацию в нейроцитах (обновление изношенных органоидов, при отсутствии способности нейроцитов к митозу).
12. Пероксисомы - овальные тельца (0,5-1,5 мкм) окруженные элементарной мембраной, заполненные гранулярным матриксом с кристаллоподобными структурами; содержат каталазы для разрушения перекисных радикалов. Функция: обезвреживание перекисных радикалов, образующихся при метаболизме в клетках.
Включения - непостоянные структуры цитоплазмы, могущие появляться или исчезать, в зависимости от функционального состояния клетки. Классификация включений:
I. Трофические включения - отложенные в запас гранулы питательных веществ (белки, жиры, углеводы). В качестве примеров можно привести: гликоген в нейтрофильных гранулоцитах, в гепатоцитах, в мышечных волокнах; жировые капельки в гепатоцитах и липоцитах; белковые гранулы в составе желтка яйцеклеток и т. д.
II. Пигментные включения - гранулы эндогенных или экзогенных пигментов. Примеры: меланин в меланоцитах кожи (для защиты от УФЛ), гемаглобин в эритроцитах (для транпортировки кислорода и углекислого газа), родопсин и йодопсин в палочках и колбочках сетчатки глаза (обеспечивают черно-белое и цветное зрение) и т.д.
III. Секреторные включения - капельки (гранулы) секрета веществ, подготовленные для выделения из любых секреторных клеток (в клетках всех экзокринных и эндокринных желез). Пример: капельки молока в лактоцитах, зимогенные гранулы в панкреатоцитах и т.д.
IV. Экскреторные включения - конечные (вредные) продукты обмена веществ, подлежащие удалению из организма. Пример: включения мочевины, мочевой кислоты, креатинина в эпителиоцитах почечных канальцев.

 

Лекция 2:

Основы сравнительной эмбриологии

Вопросы: 1. Методы исследования в эмбриологии. 2. Особенности половых клеток. Классификация яйцеклеток. 3. Характеристика отдельных этапов…   После дробления начинается следующий этап - гаструляция. Гаструляция - это сложный процесс, где в результате…

Ткани внутренней среды. Кровь.

Значение знаний о тканях внутренней среды (ТВС) для практического врача и исследователя вытекает из жизненноважных функций, выполняемых этими…   Базофильные гранулоциты - лейкоциты с крупными, грубыми, расположенными по цитоплазме не-равномерно (сгруппированные),…

Соединительные ткани. План: 1. Морфо-функциоанльная характеристика волокнистых соединительных тканей: 1) Рыхлая волокнистая соединительная ткань. Источник развития, особен-ности строения, функции, регенерация. 2) Плотная оформленная и неоформленная волокнистая соединительная ткань. Источник развития, особенности строения, функции, регенерация. 3) Соединительные ткани со специальными свойствами. Источник развития, особенности строения, функции, регенерация.

 

 

I. Рыхлая неоформленная волокнистая соединительная ткань (рвст) - анатомы называют "клетчаткой", окружает и сопровождает кровеносные и лимфати-ческие сосуды, располагается под базальной мембраной любого эпителия, образует прослойки и перегородки внутри всех паренхиматозных органов, образует слои в составе оболочек полых органов.
В эмбриональном периоде рвст образуется из мезенхимы. При этом ме-зенхимные клетки дифференцируются в направлении фибрабластического дифферона (стволовые клетки, фибробласты, фиброциты, фиброкласты, миофибробласты) и эти клетки начинают вырабатывать волокнистые компо-ненты (коллагеновые, эластические и ретикулярные волокна) и другие орга-нические компоненты (гликозаминогликаны, протеогликаны и т.д.) межкле-точного вещества. Из мезенхимных клеток образуются также другие клеточ-ные элементы рвст (макрофаги, тучные клетки, адвентициальные клетки, ли-проциты и т.д.).
Рвст состоит из клеток и межклеточного вещества, причем соотношение этих двух компонентов представлены приблизительно одинаково. Межклеточное вещество состоит из основного вещества (гомогенная аморфная масса - кол-лоидная система - гель) и волокон (коллагеновые, эластические, ретикуляр-ные), расположенных беспорядочно и на значительном расстоянии друг от друга, т.е. рыхло, что и отражено в названии ткани.
Для клеток рвст характерно большое разнообразие - клетки фибробласти-ческого дифферона (стволовая и полустволовая клетка, малоспециализиро-ванный фибробласт, дифференцированный фибробласт, фиброцит, миофиб-робласт, фиброкласт), макрофаг, тучная клетка, плазмоцит, адвентициальная клетка, перицит, липоцит, меланоцит, все лейкоциты, ретикулярная клетка.
Стволовая и полустволовая клетка ?малоспециализированныйванный фиб-робласт?дифференцированный фибробласт?фиброцит - это одни и те же клетки в разных "возрастах". Стволовые и полустволовые клетки - это мало-численные камбиальные, резервные клетки, редко делятся. Малоспециализи-рованный фибробласт - мелкая, слабоотростчатая клетки с базофильной ци-топлазмой (из-за большого количества свободных рибосом), органоиды вы-ражены слабо; активно делится митозом, в синтезе межклеточного вещества существенного участия не принимает; в результате дальнейшей дифференци-ровки превращается в дифференцированные фибробласты. Дифференциро-ванные фибробласты - самые активные в функциональном отношении клетки данного ряда: синтезируют белки волокон (эластин, коллаген) и органичекие компоненты основного вещества (гликозамингликаны, протеогликаны). В со-ответствие функции этим клеткам присущи все морфологические признаки белоксинтезирующей клетки - в ядре: четко выраженные ядрышки, часто не-сколько; преобладает эухроматин; в цитоплазме: хорошо выражен белок син-тезирующий аппарат (ЭПС гранулярный, пластинчатый комплекс, митохонд-рии). На светооптическом уровне - слабоотростчатые клетки с нечеткими границами, с базофильной цитоплазмой; ядро светлое, с ядрышками. Фибро-цит - зрелая и стареющая клетка данного ряда; веретеновидной формы, сла-боотростчатые клетки со слабо базофильной цитоплазмой. Им присущи все морфологические признаки и функции дифференцированных фибробластов, но выраженные в меньшей степени.
Клетки фибробластического ряда являются самыми могочисленными клетками рвст (до 75% всех клеток) и вырабатывает большую часть межкле-точного вещества. Антогонистом является фиброкласт - клетка с большим содержанием лизосом с набором гидролитических ферментов, обеспечивает разрушение межклеточного вещества.
Миофибробласт - клетка содержащая в цитоплазме сократительные акто-миозиновые белки, поэтому способны сокращаться. Принимают участие при заживлении ран, сближая края раны при сокращении.
Следующие клетки рвст по количеству - тканевые макрофаги (синоним: гистиоциты), составляют 15-20% клеток рвст. Образуются из моноцитов кро-ви, относятся к макрофагической системе организма. Крупные клетки с по-лиморфным ядром, способны активно передвигаться. Из органоидов хорошо выражены лизосомы и митохондрии. Функции: защитная функция путем фа-гоцитоза и переваривания инородных частиц, микроорганизмов, продуктов распада тканей; участие в клеточной кооперации при гуморальном иммуни-тете (см. тему "Кровь"); выработка антимикробного белка лизоцима и анти-вирусного белка интерферона, фактора стимулирующего ммиграцию грану-лоцитов.

 

Тучная клетка (синонимы: тканевой базофил, лаброцит, мастоцит) - со-ставляет 10% всех клеток рвст. Располагаются обычно вокруг кровеносных сосудов. Округло-овальная, иногда отростчатая клетка диаметром до 20 мкм, в цитоплазме очень много базофильных гранул. Гранулы содержат гепарин и гистамин. Происхождение точно не установлено, считается что образуются из кроветворных клеток красного костного мозга. Функции: выделяя гистамин участвуют в регуляции проницаемости межклеточного вещества рвст и стен-ки кровеносных сосудов, гепарин - для регуляции свертываемости крови. В целом тучные клетки регулируют местный гомеостаз.
Плазмоциты - образуются из В-лимфоцитов. По морфологии имеют сход-ство с лимфоцитами, хотя имеют свои особенности. Ядро круглое, располага-ется несколько эксцентрично; гетерохроматин располагается в виде пирамид обращенных к центру острой вершиной, отграничанных друг от друга ради-альными полосками эухроматина - поэтому ядро плазмоцита срванивают "ко-лесом со спицами". Цитоплазма базофильна, со светлым "двориком" около ядра. Под электронным микроскопом хорошо выражен белок синтезирующий аппарат: ЭПС гранулярный, пластинчатый комплекс (в зоне светлого "двори-ка") и митохондрии. Диаметр клетки 7-10 мкм. Функция: являются эффектор-ными клетками гуморального иммунитета - вырабатывают специфические антитела (?-глобулины).
Лейкоциты всегда присутствуют в рвст (морфологию и функции лейкоци-тов смотри в теме "Кровь").
Липоциты (синонимы: адипоцит, жировая клетка). Различают белые и бу-рые жировые клетки:
1. Белые липоциты - округлые клетки с узенькой полоской цитоплазмы во-круг одной большой капельки жира в центре. В цитоплазме органоидов мало. Небольшое ядро располагается эксцентрично. При изготовлении гистопрепаратов обычным способом капелька жира растворяется в спирте и вымывается, поэтому оставшаяся узкая кольцеобразная полоска цито-плазмы с эксцентрично расположенным ядром напоминает перстень. Функция: белые липоциты накапливают жир про запас (высококалорийный энергетический материал и вода).
2. Бурые липоциты - округлые клетки с центральным расположением ядра. Жировые включения в цитоплазме выявляются в виде многочисленных мелких капелек. В цитоплазме много митохондрий с высокой активностью железосодержащего (придает бурый цвет) окислительного фермента цито-хромоксидазы. Функция: бурые липоциты не накапливают жир, а наоборот, "сжигают" его в митохондриях, а освободившееся при этом тепло расходу-ется для согревания крови в капиллярах, т.е. участие в терморегуляции.
Адвентициальные клетки - малодифференцированные клетки рвст, распо-лагаются рядом с кровеносными сосудами. Являются резервными клетками и могут дифференцироваться в другие клетки рвст, в частности в фибробласты.
Перициты - располагаются в толще базальной мембраны капилляров; уча-ствуют в регуляции просвета гемокапилляров, тем самым регулируют крово-снабжение окружающих тканей.
Меланоциты - отростчатые клетки с включениями пигмента меланина в цитоплазме. Происхождение: из клеток мигрировавших с нервного гребня. Функция: защита от УФЛ.

Межклеточное вещество рвст состоит из основного вещества и волокон.
1. Основное вещество - гомогенная, аморфная, гелеобразная, бесструктурная масса из макромолекул полисахаридов, связанных с тканевой жидкостью. Из полисахаридов можно назвать сульфатированные гликозаминогликаны (пример: гепаринсульфат, хондроэтинсульфат; существуют в комплексе с белками, поэтому их называют протеогликанами) и несульфатированные гликозаминогликаны (пример: гиалуроновая кислота). Органическая часть основного вещества синтезируются в фибробластах, фиброцитах. Основное вещество, как каллоидная система, может переходить из состоя- ния гель в состояние золь и наоборот, тем самым играет большое значение в регуляции обмена веществ между кровью и другими тканями.
2. Волокна - второй компонент межклеточного вещества рвст. Различают коллагеновые, эластические и ретикулярные волокна.
1) Коллагеновые волокна под световом микроскопом - более толстые (диа-метр от 3 до130 мкм), имеющие извитой (волнистый) ход, окрашивающие-ся кислыми красками (эозином в красный цвет) волокна. Состоят из белка коллагена, синтезирующегося в фибробластах, фиброцитах. Под поляриза-ционном микроскопом коллагеновые волокна имеют продольную и попе-речную исчерченность. Различают 13 типов коллагеновых волокон (в рвст - I тип). Коллагеновые волокна не растягиваются, очень прочны на разрыв (6 кг/мм2). Функция - обеспечивают механическую прочность рвст.
2) Ретикулярные волокна - считаются разновидностью (незрелые) коллагено-выхных волокон, т.е. аналогичны по химическому составу и по ультра-структуре, но в отличие от коллагеновых волокон имеют меньший диаметр и сильно разветвляясь образуют петлистую сеть (отсюда и название: "рети-кулярные" - переводится как сетчатые или петлистые). Составляющие компоненты синтезируются в фибробластах, фиброцитах. В рвст встреча-ются в небольшом количестве вокруг кровеносных сосудов. Выявляются импрегнацией серебром.
3) Эластические волокна - тонкие (d=1-3 мкм), менее прочные (4-6 кг/см2), но зато очень эластичные волокна из белка эластина (синтезируются в фиб-робластах). Эти волокна исчерченностью не обладают, имеют прямой ход, часто разветвляются. Избирательно хорошо окрашиваются селективным красителем орсеином. Функция: придают рвст эластичность, способность растягиваться.
Регенерация рвст. РВСТ хорошо регенерирует и участвует при восполне-нии целостности любого поврежденного органа. При значительных повреж-дениях часто дефект органа восполняется соединительнотканным рубцом. Регенерация рвст происходит за счет стволовых клеток фибробластического дифферона и малодифференцированных клеток (адвентициальные клетки на-пример) способных дифференцироваться в фибробласты. Фибробласты раз-множаются и начинают вырабатывать органические компоненты межклеточ-ного вещества.
Функции:
1. Трофическая функция: располагаясь вокруг сосудов рвст регулирует обмен веществ между кровью и тканями органа.
2. Защитная функция обусловлена наличием в рвст макрофагов, плазмоцитов и лейкоцитов. Антигены прорвавшиеся через I - эпителиальный барьер ор-ганизма , встречаются со II барьером - клетками неспецифической (мак-рофаги, нейтрофильные гранулоциты) и иммунологической защиты (лим-фоциты, макрофаги, эозинофилы).
3. Опорно-механическая функция.
4. Пластическая функция - участвует в регенерации органов после поврежде-ний.
ПЛОТНАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ (ПВСТ)
Общей особенностью для ПВСТ является преобладание межклеточного вещества над клеточным компонентом, а в межклеточном веществе волокна преобладают над основным аморфном веществом и располагаются по отно-шению друг к другу очень близко (плотно) - все эти особенности строения в сжатой форме отражены в названии данной ткани. Клетки ПВСТ представле-ны в подавляющем большинстве фибробластами и фиброцитами (морфоло-гию и функции см. выше), в небольшом количестве (в основном в прослойках из рвст) встречаются макрофаги, тучные клетки, плазмоциты, малодиффе-ренцированные клетки и т.д.
Межклеточное вещество состоит из плотно расположенных коллагеновых волокон, основного вещества мало. По расположению волокон ПВСТ подраз-деляется на оформленную ПВСТ (волокна располагаются упорядоченно - па-раллельно друг к другу) и неоформленную ПВСТ (волокна располагаются беспорядочно). К оформленной ПВСТ относятся сухожилия, связки, апонев-розы, фасции, а к неоформленной ПВСТ - сетчатый слой дермы, капсулы па-ренхиматозных органов. В ПВСТ между коллагеновыми волокнами встреча-ются прослойки рвст с кровеносными сосудами и нервными волокнами.
ПВСТ хорошо регенерирует за счет митоза малоспециализированных фибробластов и выработки ими межклеточного вещества (коллагеновых во-локон) после дифференцировки в зрелые фибробласты. Функция ПВСТ - обеспечение механической прочности.
СОЕДИНИТЕЛЬНЫЕ ТКАНИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ
К соединительным тканям со специальными свойствами (СТСС) относятся:
1. Ретикулярная ткань.
2. Жировая ткань.
3. Пигментная ткань.
4. Слизисто-студенистая ткань.
5. Эндотелий.

В эмбриогенезе все соединительные ткани СТСС образуются из мезенхи-мы. СТСС как и все ткани внутренней среды состоят из клеток и межклеточного вещества, но клеточный компонент представлен, как правило, 1 популя-цией клеток.
1. Ретикулярная ткань - составляет основу кроветворных органов, в неболь-шом количестве имеется вокруг кровеносных сосудов. Состоит из ретику-лярных клеток и межклеточного вещества, состоящего из основного веще-ства и ретикулярных волокон. Ретикулярные клетки - крупные отростчатые клетки с оксифильной цитоплазмой, соединяясь друг с другом отростками образуют петлистую сеть. Переплетающиеся ретикулярные волокна также образуют сеть. Отсюда и название ткани -"ретикулярная ткань" - сетчатая ткань. Ретикулярные клетки способны к фагоцитозу, вырабатывают со-ставные компоненты ретикулярных волокон. Ретикулярная ткань неплохо регенерирует за счет деления ретикулярных клеток и выработки ими меж-клеточного вещества. Функции: опорно-механическая (являются несущим каркасом для созревающих клеток крови); трофическая (обеспечивают пи-тание созревающих клеток крови); фагоцитоз погибших клеток, инородных частиц и антигенов; создают специфическое микроокружение, определяю-щее направление дифференцировки кроветворных клеток.
2. Жировая ткань - это скопление жировых клеток (см. выше). В соответствие наличию 2 типов жировых клеток различают 2 разновидности жировой ткани: белый жир (скопление белых жировых клеток) - имеется в подкож-ной жировой клетчатке, в сальниках, вокруг паренхиматозных и полых ор-ганов; бурый жир (скопление бурых жировых клеток) - имеется у живот-ных впадающих в зимнюю спячку, у человека только в период новорож-денности и в раннем детском возрасте. Функции белого жира: запас энер-гетического материала и воды; механическая защита; участие в терморегу-ляции (теплоизоляция). Функции бурого жира: участие в терморегуляции - жир сграет в митохондриях липоцитов, тепло выделяющееся при этом со-гревает кровь в проходящих рядом капиллярах.
3. Пигментная ткань - скопление большого количества меланоцитов. Имеется в определенных участках кожи (вокруг сосков молочных желез), в сетчатке и радужке глаза, и т.д.. Функция: защита от избытка света, УФЛ.
4. Слизисто-студенистая ткань - имеется только у эмбриона (под кожей, в пу-почном канатике). В этой ткани очень мало клеток (мукоциты), преоблада-ет межклеточное вещество, а в нем - преобладает студенистое основное вещество, богатое гиалуроновой кислотой. Такая особенность строения обуславливает высокий тургор данной ткани. Функция: механическая за-щита нижележащих тканей, препятствует пережатию кровеносных сосудов пуповины.
5. Эндотелий - по строению очень похож мезотелию, поэтому некоторые ав-торы относят его однослойному плоскому эпителию. Другие авторы счи-тают эндотелий СТСС, приводя в пользу этого следующие аргументы:
а) источник развития, так же как у всех ТВС, - мезенхима;
б) эндотелий не разграничивает внутреннюю среду организма от окружающей среды и среды полостей, что характерно для эпителия (эндотелий внут-ренней поверхностью контактирует кровью, наружней - рвст, обе являются ТВС); Эндотелий выстилает внутреннюю поверхность кровеносных и лимфа-тических сосудов, камеры сердца. Эндотелий состоит из резко уплощенных клеток (толщина 0,2-0,3 мкм) полигональной формы. Имеют 1 или несколько ядер в центре клетки, на свободной поверхности - одиночные микроворсин-ки. Органоидов мало, в цитоплазме встречается небольшое количество мито-хондрий, пиноцитозные пузырьки. Располагаются на базальной мембране сплошным пластом, между клетками могут оставаться щели. Регенерация хо-рошая, за счет митоза эндотелиоцитов. Функция: обмен между кровью и ок-ружающими тканями.

 

Лекция N6:

 

Скелетные ткани.
План: 1. Источники развития, морфофункциональная характеристика и особенности строения, кровоснабжение, регенерация, возрастные изменения разновидностей хрящевых тканей.
2.Источники развития, морфофункциональная характеристика клеток и межклеточного вещества, особенности строения, регенерация, воз-растные изменения разновидностей костной ткани.

Скелетные ткани - это 3-я группа в системе ТВС и выполняют в основном опорно-механическую функцию.
Знание гистологического строения, особенностей регенерации скелетных тканей в норме необходимы студентам для понимания и усвоения механиз-мов патологических процессов при различных заболеваниях скелетных тка-ней, которые Вы будете изучать на других кафедрах. Заболеваний скелетных тканей встречаются довольно часто:
- механические повреждения - переломы;
- заболевания обменного характера (пример: нарушения обмена Са++;
- новообразования, исходящие из скелетных тканей.
1. Основная область Вашей врачебной деятельности - зубочелюстной аппарат включает как составной элемент - костные ткани, и патологические про-цессы часто затрагивают эти костные ткани.
2. Да и такие твердые ткани зуба как дентин и цемент по классификации яв-ляются 3-й подгруппой скелетных тканей под названием дентиноидных тканей.
Хрящевые и костные ткани образуют скелетные ткани, выполняющие глав-ным образом опорно-механическую функцию. Помимо опорно-механической эти ткани также выполняют следующие функции:
1. защитная (механическая защита органов грудной и брюшной полости);
2. участие в минеральном обмене, особенно в обмене Са++.
Классификация скелетных тканей:
1. Хрящевые ткани:
а) гиалиновый хрящ;
б) эластический хрящ;
в) коллагеново-волокнистый хрящ.
2. Костные ткани:
а) тонковолокнистая (пластинчатая) костная ткань;
б) ретикулофиброзная (грубоволокнистая) костная ткань.
Общая морфофункциональная характеристика хрящевых тканей:
Хрящевая ткань, как любая соединительная ткань, состоят из клеток и меж-клеточного вещества. Клетки хрящевых тканей представлены хондробласти-ческим дифференом:
1. Стволовая клетка
2. Полустволовая клетка
3. Хондробласт
4. Хондроцит
5. Хондрокласт
Стволовая и полустволовая клетка - малодифференцированные камбиальные клетки, в основном локализуются вокруг сосудов в надхрящнице. Дифферен-цируясь превращаются в хондробласты и хондроциты, т.е. необходимы для регенерации.
Хондробласты - молодые клетки, располагаются в глубоких слоях надхрящ-ницы по одиночке, не образуя изогенные группы. Под световым микроско-пом х/бласты уплощенные, слегка вытянутые клетки с базофильной цито-плазмой. Под электронным микроскопом в них хорошо выражены ЭПС гра-нулярный, комплекс Гольджи, митохондрии, т.е. белоксинтезирующий ком-плекс органоидов т.к. основная функция х/бластов - выработка органической части межклеточного вещества: белки коллаген и эластин, глюкозаминогли-каны (ГАГ) и протеогликаны (ПГ). Кроме того, х/бласты способны к размно-жению и в последующем превращаются в хондроциты. В целом, х/бласты обеспечивают аппозиционный (поверхностный) рост хряща со стороны над-хрящницы.
Хондроциты - основные клетки хрящевой ткани, располагаются в более глу-боких слоях хряща в полостях - лакунах. Х/циты могут делиться митозом, при этом дочерние клетки не расходятся, остаются вместе - образуются так называемые изогенные группы. Первоначально они лежат в одной общей ла-куне, затем между ними формируется межклеточное вещество и у каждой клетки данной изогенной групы появляется своя капсула. Х/циты - овально-округлые клетки с базофильной цитоплазмой. Под электронным микроско-пом хорошо выражены ЭПС гранулярный, комплекс Гольджи, митохондрии, т.е. белоксинтезирующий аппарат, т.к. основная функция х/цитов - выработка органической части межклеточного вещества хрящевой ткани. Рост хряща за счет деления х/цитов и выработки ими межклеточного вещества обеспечивает интерстициальный (внутренний) рост хряща.
В хрящевой ткани кроме клеток образующих межклеточное вещество есть и их антогонисты - разрушители межклеточного вещества - это хондрокласты (можно отнести к макрофагической системе): доволно крупные клетки, в ци-топлазме много лизосом и митохондрий. Функция х/кластов - разрушение по-врежденных или изношенных участков хряща.
Межклеточное вещество хрящевой ткани содержит коллагеновые, эластиче-ские волокна и основное вещество. Основное вещество состоит из тканевой жидкости и органических веществ:
- ГАГ (хондроэтинсульфаты, кератосульфаты, гиалуроновая кислота);
- ПГ (белок +ГАГ);
- липиды.

 

 

Межклеточное вещество обладает высокой гидрофильностью, содержание воды доходит до 75% массы хряща, это обуславливает высокую плотность и тургор хряща. Хрящевые ткани в глубоких слоях не имеют кровеносных со-судов, питание осуществляется диффузно за счет сосудов надхрящницы.
Надхрящница - это слой соединительной ткани, покрывающий поверхность хряща. В надхрящнице выделяют наружный фиброзный (из плотной не-оформленной сдт с большим количеством кровеносных сосудов) и внутрен-ний клеточный слой, содержащее большое количество стволовых, полуство-ловых клеток и ф/бластов.
Мы рассмотрели общий принцип строения хрящевых тканей. Чем же отли-чаются друг от друга 3 вида хряща? Отличия в основном касаются строения межклеточного вещества:
Гиалиновый хрящ - покрывает все суставные поверхности костей, содер-жится в грудинных концах ребер, в воздухоносных путях. Главное отличие гиалинового хряща от остальных хрящей в строении межклеточного вещества: межклеточное вещество гиалинового хряща в препаратах окрашен-ных гематоксилин-эозином кажется гомогенным, не содержащим волокон. В действительности в межклеточном веществе имеется большое количество коллагеновых волокон, у которых коэффициент преломления одинаковый с коэффициентом преломления основного вещества, поэтому коллагеновые во-локна под микроскопом не видимы, т.е. они маскированы. Второе отличие гиалинового хряща - вокруг изогенных групп имеется четко выраженная ба-зофильная зона - так называемый территориальный матрикс. Это связано с тем, что х/циты выделяют в большом количестве ГАГ с кислой реакцией, по-этому этот участок окрашивается основными красками, т.е. базофильна. Сла-бооксифильные участки между территориальными матриксами называются интертерриториальным матриксом.
Эластический хрящ имеется в ушной раковине, надгортаннике, рожковидных и клиновидных хрящах гортани. Главное отличие эластического хряща - в межклеточном веществе кроме коллагеновых волокон имеется большое ко-личество беспорядочно расположенных эластических волокон, что придает эластичность хрящу. В эластическом хряще меньше содержание липидов, хондроэтинсульфатов и гликогена. Эластический хрящ не обызвествляется.
Волокнистый хрящ расположен в местах прикрепления сухожилий к костям и хрящам, в симфизе и межпозвоночных дисках. По строению занимает про-межуточное положение между плотной оформленной соединительной и хря-щевой тканью. Отличие от других хрящей: в межклеточном веществе гораздо больше коллагеновых волокон, причем волокна расположены ориентирован-но - образуют толстые пучки, хорошо видимые под микроскопом. Х/циты чаще лежат по одиночке вдоль волокон, не образуя изогенные группы.
К О С Т Н Ы Е Т К А Н И
Костные ткани состоят из клеток и межклеточного вещества. К клеткам ко-стной ткани относятся остеогенные стволовые и полустволовые клетки, ос-теобласты, остеоциты и остеокласты.
Стволовые клетки - это резервные камбиальные клетки, располагаются в над-костнице. Полустволовые клетки - клетки с высокой пролиферативной актив-ностью, имеют развитый синтетический аппарат.
Остеобласты - это клетки образующие костную ткань, т.е. в функциональном отношении главные клетки костной ткани. Локализуются в основном в над-костнице. Имеют полигональную форму, могут встречаться слабоотростча-тые клетки. Цитоплазма базофильна, под электронным микроскопом хрошо выпажены гранулярный ЭПС, пластинчатый комплекс и митохондрии. Функ-ция: выработка органической части межклеточного вещества, т.е. белки ос-сеиновых волокон и оссеомукоид. При созревании остеобласты превращают-ся в остеоциты.
Остеоциты - по количественному составу самые многочисленные клетки ко-стной ткани. Это отростчатые клетки, лежат в костных полостях - лакунах. Диаметр клеток достигает до 50 мкм. Цитоплазма слабобазофильна. Орга-ноиды развиты слабо (гранулярный ЭПС, ПК и митохондрии). Не делятся. Функция: принимают участие в физиологической регенерации костной ткани, вырабатывают органическую часть межклеточого вещества. На остеобласты и остеоциты стимулирующее влияние оказывает гормон щитовидной железы кальцитонин - усиливается синтез органической части межклеточного веще-ства и усиливается отложение кальция, при этом концентрация кальция в крови снижается.
Остеокласты - это крупные клетки, почти в 2 раза крупнее остеоцитов, их диаметр достигает до 100 мкм. Остеокласты являются специализированными макрофагами, образуются путем слияния многих макрофагов гематогенного происхождения, поэтому содержат по 10 и более ядер. В остеокластах хоро-шо выражены лизосомы и митохондрии. Функция - разрушение костной тка-ни. Остеокласты выделяют СО2 и фермент карбоангидразу; СО2 связывается Н2О (реакция катализируется карбоангидразой) и образуется угольная кисло-та Н2СО3; угольная кислота реагируя растворяет соли кальция, растворенный кальций вымывается в кровь. Органическая часть межклеточного вещества лизируется протеолитическими ферментами лизосом остеокластов. Функция остеокластов стимулируется паратириокальцитонином паращитовидной же-лезы.
Межклеточное вещество костной ткани состоит:
1. Неорганические соединения (фосфорнокислые и углекислые соли кальция) - составляют 70% межклеточного вещества.
2. Органическая часть межклеточного вещества представлена коллагеновыми (синоним - оссеиновыми) волокнами и аморфной склеивающей массой (ос-сеомукоид) - составляет 30%.
Соотношение органическрой и неорганической части межклеточного веще-ства зависит от возраста: у детей органической части несколько больше 30%, а неорганической части меньше 70%, поэтому у них кости менее прочные, но зато более гибкие (не ломкие); в пожилом возрасте, наоборот, доля неоргани-ческой части увеличивается, а органической части уменьшается, поэтому кости становятся более твердыми, но более ломкими.
В отличии от хрящевых тканей в костной ткани кровеносных сосудов больше: имеются как в надкостнице, так и в глубоких слоях кости.
Кость как орган покрыта надкостницей. В ней различают наружный волок-нистый и внутренний клеточный слой. В надкостнице очень много кровенос-ных сосудов, стволовых и полустволовых остеогенных клеток, остеобластов. Функция надкостницы - питание и регенерация кости.
Гистологическое отличие тонковолокнистой и ретикулофиброзной кости заключается в пространственной организации (строении) межклеточного ве-щества, а еще точнее - в расположении оссеиновых волокон:
1. В тонковолокнистой костной ткани оссеиновые волокна располагаются в одной плоскости параллельно друг другу и склеиваются оссеомукоидом и на них откладываются соли кальция - т.е. формируют пластинки, поэтому тонковолокнистая костная ткань по другому называется пластинчатой кост
2. ной тканью. Направление оссеиновых волокон в 2-х соседних пластинках взаимоперпендикулярны, что придает особую прочность этой ткани. Меж-ду костными пластинками в полостях-лакунах лежат остеоциты. Если рас-смотреть трубчатую кость как орган, то в ней различают:
1) Надкостница (периост).
2) Наружные общие (генеральные) пластинки - костные пластинки окружают кость по всему периметру, а между ними - остеоциты.
3) Слой остеонов. Остеон (Гаверсова система) - это система из 5-20 цилинд-ров из костных пластинок, концентрически вставленнве друг в друга. В центре остеона проходит кровеносный капилляр. Между костными пла-стинками-цилиндрами в лакунах лежат остеоциты. Промежутки между со-седними остеонами заполнены вставочными пластинками - это остатки разрушающихся старых остеонов, которые были здесь до этих остеонов.
4) Внутренние общие (генеральные) пластинки (аналогичны с наружными).
5) Эндоост - по строению аналогичен с периостом.
Регенерация и рост кости в толщину осуществляется за счет периоста и эн-дооста. Все трубчатые кости, а также большинство плоских костей гистологически являются тонковолокнистой костью.
2. Ретикулофиброзная костная ткань имеется в черепных швах, местах при-крепления сухожилий к костям, в эмбриональном периоде вначале на мес-те хрящевого макета будущей кости формируется ретикулофиброзная кость, которая потом становится тонковолокнистой. Грубоволокнистая (ре-тикулофиброзная) кость образуется ткаже при сращении костей после пе-релома, т.е. в костной мозоле. Главное отличие ретикулофиброзной кост-ной ткани - в расположении оссеиновых волокон в межклеточном веществе - волокна располагаются произвольно, неупорядочонно, склеиваются оссе-омукоидом и на них откладываются соли кальция. Остеобласты и остеоци-ты также располагаются в лакунах. Ретикулофиброзная кость менее проч-ная.
Регуляция обмена кальция между костной тканью и кровью:
1. Гормональная регуляция:
1) паратириокальцитонин - из костей вымывает, в крови увеличимвает;
2) кальцитонин - в крови Са++ снижается, в костях откладывается;
3) минералкортикоиды с надпочечников.
2. Витамины:
1) вит. Д - усиливает всасывание Са++ в кишечнике и усиливает отложение в костях;
2) вит. С - уменьшает содержание Са++ в костях;
3) вит. А - кальций вымывается из костей в кровь.
РАЗВИТИЕ СКЕЛЕТНЫХ ТКАНЕЙ В ЭМБРИОГЕНЕЗЕ
В эмбриональном периоде скелетные ткани образуются из мезенхимы, а в формировании костей и хрящей осевого скелета (позвоночный столб) участ-вуют и склеротомы.
I. Развитие хрящевых тканей.
В развитии хрящевых тканей можно выделить 3 стадии:
I стадия - образование хондрогенных островков. В местах где образуется хрящ, мезенхимные клетки теряют отростки, размножаются и образуют плот-ные скопления - хондрогенные островки.
II стадия - формирование первичного хряща. Клетки хондрогенных островков дифференцируются в хондробласты, при этом в клетках становится хорошо выраженными гранулярный ЭПС и увеличивается количество свободных ри-босом. Х/бласты начинают сентизировать и выделять белки, из которых в межклеточных пространствах собираются колагеновые волокна; но межкле-точное вещество еще остается оксифильной (из-за отсутствия ГАГ и ПГ). Так формируется I хрящевая ткань.
III стадия - дифференцировка хрящевой ткани:
- х/бласты синтезируют кроме коллагеновых волокон еще ГАГ и ПГ, поэтому межклеточное вещество становится базофильным;
- формируется надхрящница.
РАЗВИТИЕ КОСТНОЙ ТКАНИ может протекать 2 способами:
I. Прямой остеогенез - характерен для плоских костей, в том числе костей черепа и зубочелюстного аппарата. На месте будущей кости клетки мезен-химы располагаются более плотно и васкуляризуются, так формируется ос-теогенный островок; остеогенные клетки этих островков дифференцируют-ся в остеобласты и остеоциты. О/бласты и о/циты вырабатывают органиче-скую часть межклеточного вещества (оссеиновые волокна и оссеомукоид), при этом волокна располагаются беспорядочно. На органическую основу межклеточного вещества откладываются соли кальция, т.е. происходит кальцификация м/к вещества, в результате этих процессов образуются пло-ские кости, состоящие из ретикулофиброзной костной ткани, которая по мере увеличения физической нагрузки перестраивается в токоволокнистую костную ткань.
II. Непрямой остеогенез или развитие кости на месте хряща - характерно для трубчатых костей. На месте будущей кости формируется модель будущей кости из гиалинового хряща с надхрящницей. Замещение хрящевой ткани на костную начинается с диафиза. Малодифференцированные клетки в со-ставе надхрящницы диафиза дифференцируются в остеобласты. Остеобла-сты начинают вырабатывать межклеточное вещество костной ткани и об-разуют вокруг диафиза костную манжетку из ретикулофиброзной кости. Затем ретикулофиброзная костной манжетки перестраивается в пластинча-тую костную ткань. Совокупность описанных процессов называется пери-хондральным окостенением. Образование костной манжетки приводит к нарушению питания хряща в более глубоких слоях диафиза, поэтому там начинаются дистрофические процессы, а также обызвествление хряща. В эти участки хряща со строны костной манжетки начинают врастать кров-носные сосуды с клетками мезенхимы, остеобластами и остеокластами. Остеокласты усливают разрушение хрящевой ткани в центре диафиза. А остеобласты и остециты начинают формировать костную ткань, т.е. начи-нается энхондральное окостенение. В центре энхондральной кости в ре-зультате деятельности остеокластов образуется костномозговая полость. Вслед за диафизом центры окостенения формируются и в эпифизах. Меж-ду диафизом и эпифизом сохраняется прослойка хрящевой ткани, за счет котрой рост кости в длину продолжается до конца периода роста организма в длину, т.е. до 20-21 года.

 

Лекция N7:

Нервные ткани. План лекции: 1. Источники развития нервных тканей. 2. Классификация нервных тканей. 3. Морфофункциональная характеристика нейроцитов. 4. Классификация, морфофункциональная характеристика глиоцитов. 5. Возрастные изменения, регенерация нервных тканей.

 

Нервные ткани (НТ) являются основным тканевым элементом нервной сис-темы, осуществляющей регуляцию деятельности тканей и органов, их взаи-мосвязь и связь с окружающей средой, корреляцию функций, интеграция и адаптацию организма. Эти функции НТ выполняет благодаря способности воспринимать раздражение, кодировать информацию в нервных импульсах, передачи этих импульсов, анализа и синтеза содержащихся в импульсах ин-формации = это основной механизм деятельности НТ. В то же время свою основную функцию НТ могут выполнять основываясь на принципиально дру-гих механизмах - регуляция работой органов и тканей путем синтеза и выде-ления биологически активных веществ (гормоноподобных) нейросекретор-ными клетками.
Источником развития НТ является нейроэктодерма. В результате нейруля-ции из дорсальной эктодермы образуется нервная трубка и ганглиозная пла-стинка. Эти зачатки состоят из малодифференцированных клеток - медулоб-ластов, которые интенсивно делятся митозом. Медулобласты очень рано на-чинают дифференцироваться и дают начало 2 дифферонам: нейробластиче-ский дифферон (нейробласты?молодые нейроциты?зрелые нейроциты); спонгиобластический дифферон (спонгиобласты?глиобласты?глиоциты).
Нейробласты характеризуются образованием отростка (только аксона) и нейрофибрилл. В цитоплазме хорошо выражены гранулярный ЭПС, пластин-чатый комплекс и митохондрии. Нейробласты способны к миграции, но утра-чивают способность к делению (необратимо блокирован синтез ДНК).
Молодые нейроциты - происходит интенсивный рост клеток, появляются дендриты, в цитоплазме появляется базофильное вещество, образуются пер-вые синапсы. Дифференцировка нейробластов в молодые нейроциты проис-ходит группами (гнездами).
Стадия зрелых нейроцитов - самая длительная стадия; нейроциты приобре-тают свою окончательную форму, у клеток увеличивается количество синап-сов.
Классификация НТ:
I. Нейроциты (синонимы: нейроны, нервные клетки):
1. По функции нейроциты делятся:
а) афферентные (чувствительные);
б) ассоциативные (вставочные);
в) эффекторные (двигательные или секреторные).
2. По строению (количеству отростков):
а) униполярные - с одним отростком аксоном;
б) биполярные:
- истинные биполярные (аксон и дендрит отходят от тела нейроцита раздельно);
- псевдоуниполярные (от тела нейроцита аксон и дендрит отходят вместе как один отросток и на определенном растоянии разделяются на два).
в) мультиполярные - с 3 и более отростками.
II. Нейроглиоциты:
А. Макроглиоциты:
1. Эпиндимоциты.
2. Олигодендроциты:
а) глиоциты ЦНС;
б) мантийные клетки (нейросателлитоциты);
в) леммоциты (Шванновские клетки);
г) концевые глиоциты.
3. Астроциты:
а) плазматические астроциты (синоним: коротколучистые астроциты);
б) волокнистые астроциты (синоним: длиннолучистые астроциты).
Б. Микроглиоциты (синоним: мозговые макрофаги).

 

 

НЕЙРОЦИТЫ. Размеры клеток широко варьирует: d=5-130 мкм, а отростки могут достигать длины до 1-1,5 метра. По форме имеются звездчатые, пира-мидные, веретиновидные, паукообразные и др. разновидности нейроцитов. Отличительной особенность нейроцитов является обязательное наличие от-ростков. Среди отростков различают аксон (у клетки всегда только 1, обычно длинный отросток; проводит импульс от тела нейроцита к другим клеткам) и дендрит (у клетки 1 или несколько, обычно сильно разветвляются; проводят импульс к телу нейроцита). Аксон и дендрит - это отростки клетки, покрытые цитолеммой; внутри содержат нейрофиламенты, нейротрубочки, митохонд-рии, пузырьки. Отросток нейроцита покрытая снаружи глиоцитами (леммо-цитами) называется нервным волокном.
Ядро нейроцита - обычно крупное, круглое, содержит сильно деконденци-рованный (эу-) хроматин; содержит 1 или несколько хорошо выраженное яд-рышко.
В цитоплазме имеется хорошо выраженная гранулярная ЭПС, пластинча-тый комплекс и митохондрии. Под световым микроскопом цитоплазма базо-фильна из-за наличия базофильного вещества (синоним: базофильная суб-станция, тигроид). Базофильное вещество нейроцитов под элктронным мик-роскопом соответствует гранулярной ЭПС. Количество базофильного веще-ства меняется в зависимости от функционального состояния нейроцита. Ба-зофильное вещество отсутствует в аксонах, начиная от аксонального холми-ка.
В цитоплазме нейроцитов содержится органоид специального назначения нейрофибриллы, состоящие из нейрофиламентов и нейротубул. Нейрофиб-риллы - это фибриллярные структуры диаметром 6-10 нм из спиралевидно закрученных белков; выявляются при импрегнации серебром в виде волокон, расположенных в теле нейроцита беспорядочно, а в отростках - параллель-ными пучками; функция: опорно-механическая (цитоскелет) и участвуют в транспорте веществ по нервному отростку.
В цитоплазме нейроцитов интенсивно идет процесс синтеза белков, расхо-дуемое на обновление белков в теле , часть белков транспортируется вдоль отростков. Обнаружено, что в отростках существует течение цитоплазмы от тела нейроцита на периферию со скоростью 5 мм/день. Кроме ткаого мед-ленного течения цитоплазмы по отросткам осуществляется быстрый транс-порт белков (50-2000 мм/день); причем при траспорте веществ по отросткам большую роль играют нейрофиламенты и нейротубулы. В аксонах кроме того существует ретроградная транспортировка веществ (против течения) - от пе-риферии к телу нейроцита со скоростью 50-70 мм/день.
Проведение нервных импульсов осуществляется по поверхности цитолем-мы.
Для передачи нервных импульсов от нейроцита к другой клетке существу-ют синапсы - особоспециализированные контакты. В зависимости от того между какими структурами осуществляется контакт, различают синапсы:
- аксосоматический;
- аксодендритический;
- аксоаксональный;
- соматосоматический;
- дендродендритический;
- нервно-мышечный;
- нейроваскулярный/
По механизму передачи импульсов различают синапсы:
- нейрохимические (при помощи медиатров: холинэригические, адренэрги- ческие, серотонинэргические, дофаминэргические, пептидэргические;
- электротонические (щелевой или плотный контакт);
- смешанные.
По конечному эффекту синапсы делятся:
- тормозные;
- возбуждающие.
НЕЙРОГЛИОЦИТЫ - это вспомогательные клетки НТ.
А. МАКРОГЛИОЦИТЫ.
I. Эпиндимоциты - выстилают спинно-мозговой канал, мозговые желудочки. По строению напоминают эпителий. Клетки имеют низкопризматическую форму, плотно прилегают друг к другу, образуя сплошной пласт. На апи-кальной поверхности могут иметь мерцательные реснички. Другой конец клеток продолжается в длинный отросток, пронизывающий всю толщу го-ловного, спинного мозга. Функция: разграничительная (ликворчмозговая ткань), участвует в образовании и регуляции состава ликвора.
II. Астроциты - отросчатые ("лучистые") клетки, образуют остов спинного и головного мозга.
1) плазматические астроциты - клетки с короткими, но толстыми отростками, содержатся в сером веществе.
2) волокнистые астроциты - клетки с тонкими длинными отростками, нахо-дятся в белом веществе ЦНС.
Функция астроцитов - опорно-механическая.
III. Олигодендроглиоциты - малоотростчатые глиальные клетки, окружают тела и отростки нейроцитов в составе ЦНС и нервных волокон. Разновид-ности:
1. Глиоциты ЦНС - окружают тела и отростки нейроцитов в ЦНС.
2. Мантийные клетки (сателлиты) окружают тела нейроцитов в спинальных ганглиях.
3. Леммоциты (Шванновские клетки) - окружают отростки нейроцитов и вхо-дят в состав безмиелиновых и миелиновых нервных волокон.
4. Концевые глиоциты - окружают нервные окончания в рецепторах.
Функции олигодендроглиоцитов: трофика нейроцитов и их отростков; играют определенную роль в процессах возбуждения (торможения) нейроцитов; уча-ствуют в проведении импульсов по нервным волокнам; регуляция водно-солевого баланса в нервной системе; участие в рецепции раздражителей; за-щитная (изоляция).
Б. МИКРОГЛИОЦИТЫ. Источник развития: в эмбриональном периоде - из мезенхимы; в последующем могут образоваться из клеток крови моноцитар-ного ряда. Микроглиоциты - мелкие отростчатые, паукообразной формы клетки, способны к амебоидному движению. В цитоплазме имеют лизосомы и митохондрии. Функция: защитная, путем фагоцитоза, поэтому их называют
мозговыми макрофагами, т.е. микроглиоциты относятся к макрофагической системе организма.
НЕРВНОЕ ВОЛОКНО - это аксон или дендрит (осевой цилиндр - отросток нервной клетки, одетый цитолеммой) окруженный леммоцитом . Различают безмиелиновый (безмякотный) и миелиновое (мякотное) нервное волокно.
1. В безмиелиновом нервном волокне осевой цилиндр прогибает цитолемму леммоцита и продавливается до центра клетки; при этом осевой цилиндр отделен от цитоплазмы цитолеммой леммоцита и подвешан на дупликату-ре этой мембраны (брыжейка или мезаксон). В продольном срезе безмие-линового волокна осевой цилиндр покрыт цепочкой леммоцитов, как бы нанизанных на этот осевой цилиндр. Как правило, в каждую цепочку лем-моцитов погружаются одновременно с разных сторон несколько осевых цилиндров и образуется так называемое "безмиелиновое волокно кабель-ного типа". Безмиелиновые нервные волокна имеются в постганглионар-ных волокнах эфферентного звена рефлекторной дуги вегетативной нерв-ной системы. Нервный импуль по безмиелиновому нервному волокну про-водится как волна деполяризации цитолеммы осевого цилиндра со скоро-стью 1-2 м/сек.
2. Начальный этап формирования миелинового волокна аналогичен безмие-линовому волокну. В дальнейшем в миелиновом нервном волокне мезак-сон сильно удлинняется и наматывается на осевой цилиндр в много слоев; цитоплазма леммоцита образует поверхностный слой волокна, ядро оттес-няется на периферию. В продольном срезе миелиновое нервное волокно также представляет цепочку леммоцитов, "нанизанных" на осевой цилиндр; границы между соседними леммоцитами в волокне называются перехватами (перехваты Ранвье). Большинство нервных волокон в нервной системе по строению являются миелиновыми. Нервный импуль в миелино-вом нервном волокне проводится как волна деполяризации цитолеммы осевого цилиндра, "прыгающая" (сальтирующая) от перехвата к следую-щему перехвату со скоростью до 120 м/сек.
ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ И РЕГЕНЕРАЦИЯ НЕРВНОЙ ТКАНИ
Возрастные изменения в нервной ткани связаны с утратой нейроцитов в по-стнатальном периоде способности к делению, и как следствие этого пост-пенным уменьшением количества нейроцитов, особенно чувствительных нейроцитов, а также уменьшением уровня метаболических процессов в ос-тавшихся нейроцитах. Все это выражается закономерным накоплением вклю-чений липофусцина ("пигмент изнашивания") в цитоплазме.
Рассматривая процессы регенерации в нервных тканях следует сказать, что нейроциты являются наиболее высокоспециализированными клетками орга-низма и поэтому утратили способность к митозу. Физиологическая регенера-ция (восполнение естественного износа) в нейроцитах хорошая и протекает по типу "внутриклеточной регенерации" - т.е. клетка не делится, но интен-сивно обновляет изношенные органоиды и другие внутриклеточные структу-ры. Для этого в нейроцитах хорошо выражены гранулярный ЭПС, пластинча-тый комплекс и митохондрии, т.е. имеется мощный синтетический аппарат для синтеза органических компонентов внутриклеточных структур.
Отсутствие клеточной формы регенерации нейроцитов обуславливает раз-растание нейроглии и соединительной ткани на месте повреждения (репара-тивная регенерация - восстановление после повреждений).
В случае повреждения только отростка нейроцита регенерация возможна и протекает успешно при наличии определенных для этого условий. При этом, дистальнее места повреждения осевой цилиндр нервного волокна подверга-ется деструкции и рассасывается, но леммоциты при этом остаются жизне-способными. Свободный конец осевого цилиндра выше места повреждения утолщается - образуется "колба роста", и начинает расти со скоростью 1 мм/день вдоль оставшихся в живых леммоцитов поврежденного нервного во-локна, т.е. эти леммоциты играют роль "проводника" для растущего осевого цилиндра. При благоприятных условиях растущий осевой цилиндр достигает бывшего рецепторного или эффекторного концевого аппарата и формирует новый концевой аппарат. Для нормальной регенерации волокна необходимо:
1. Своевременная хирургическая обработка очага повреждения (иссечение нежизнеспособных тканей, кровяных сгустков).
2. Обеспечение контакта центрального и дистального фрагмента нервного волокна в зоне повреждения (наложение шва "конец в конец" на повреж-денном волокне).
3. Обеспечение нормального кровоснабжения поврежденного нервного во-локна по всей длине (сшивание поврежденных кровеносных сосудов, со-провождающих нерв).
4. Раннее назначение дозированной физической нагрузки и массажа повреж-денной

конечности.

 

Лекция 8:

 

Мышечные ткани. План: 1. Развитие мышечных тканей в эволюции. 2. Классификация МТ. 3. Краткая морфо-функциональная характеристика МТ. 4. Регенерация МТ.

МТ выполняют функцию сокращения и обеспечивают различного рода двигательные реакции организма. В ходе эволюции специализация МТ происходила на основе первичных механизмов сокращения, универсальных для всех клеток многоклеточного организма.
В связи с этим МТ возникли из разных источников и приобрели многообразие в структуре.
Наиболее древние среди МТ - это соматическая МТ. Соматическая МТ возникла из покровных эпителиев (гипотетический, предок). Затем в ходе эволюции из стенки целомической полости появились клетки сердечной МТ у I и II-но ротых.
Сокращаемые ткани появились также из тканей внутренний среды - так называемая висцеральная (внутренностная) мускулатура.
Кроме того MТ могут развиваться из закладок нервной системы. К ним относятся мышцы расширяющий и суживающий зрачок. А также существуют мышечные элементы, входящие в состав эпителия желез - так называемые миоэпителиальные клетки слюнных желез.
Функция сокращенная достигается тем, что мышечные элементы удлинняются, в цитоплазме накапливаются сократительные белки (актин и миозин) и наконец образуется специальный сократительный аппарат.
Ввиду многообра.зия МТ и мышечных элементов предложены несколько классификаций. В то же время большинство исследователей придерживаются классификации, предложенной Николаем Григорьевичем Хлопиным:
1. Гладкая МТ.
2. Поперечно-полосатая МТ.
1) Поперечно-полосатая МТ соматического типа.
2). Поперечно-полосатая МT целомического (сердечного) типа.
3. Мионейральные МТ.
4. Миоэпителиальные элементы или миоидние клеточные комплексы.
Рассмотрим гистологические строение, функции и регенерацию отдельных видов МТ.
Гладкая МТ (ГМТ) входит в состав мышечных оболочек сосудов, кишечника, мочевыводящих, семявыводящих путей; обнаруживается в селезенке, коже и других органах. Структурно-функциональной единицей ГМТ является гладкомышечная клетка или леомиоцит. Это веретеновидной формы клетка, в цитоплазме содержит тонкие (? 5-8 нм), средние (до 10 нм) и толстые (13-18 нм) миофиламенты. Тонкие миофиламенты, или Актиновые, находятся в тесном взаимодействии с толстыми (Миозиновыми) миофиламентами. Причем тонких миофиламентов примерно в 15 раз больше, чем толстых. Длина миоцитов колеблется от 20 до 500 мкм, а диаметр составляет 10-20 мкм. Ядро располагается в расширенной центральной части клетки. Форма ядра вытянутая, палочковидная. Хроматин упакован плотно, часто видны глубокие складки кариолеммы. С поверхности клетки клетка окружена оболочкой - миолеммой (соответствует цитолемме). Кроме того снаружи миолеммы имеется дополнительно базальная мембрана, к которой прикрепляются коллагеновые и аргирофильные волокна. Леомиоциты собираются в пучки, имеющие продольное и циркулярное направление в органе. Эти пучки иннервируются одним нервом и называются эффекторной сократимой единицей ГМТ.
Трофический компонент леомиоцита представлен митохондриями, пластинчатым комплексом, ЭПС, включениями гликогена.
Гладкая МТ иннервируется вегетативной нервной системой, т.е. не подчиняется воле человека. Сокращение ГМТ медленное - тоническое, зато ГМТ малоутомляема.
ГМТ в эмбриональном периоде развивается из мезенхимы. Вначале мезенхимные клетки имеют звездчатую, отросчатую форму, а при дифференцировке в ГМ-клетки приобретают веретеновидную форму; в цитоплазме накапливаются органоиды спецназначения - миофибриллы из актина и миозина.
Регенерация ГМТ:
1. Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают митохондрии и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты.
2. Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д.т.

Поперечно-полосатая МТ соматического типа (скелетная мускулатура)- является древнейшей гистологической системой» В эмбриогенезе ПП МТ соматического типа развивается из миотомов. Структурно-функциональной единицей является мышечное волокно или мион. Мышечное волокно по форме организации живого вещества является симпластом (огромная масса цитоплазмы, где разбросаны сотни тысяч ядер).
Мышечное волокно включает большое число ядер, саркоплазму. В саркоплазме находятся:
- органоиды спецназначения - миофибриллы
- митохондрии
- Т-система (Т-трубочки, Л-трубочки, цистерны;)
- включенияя (особенно гликоген);
Мышечное волокно окружено специальной оболочкой сарколеммой, а поверх нее еще и базальной мембраной. Миофибриллы расположены строго закономерно по длине, при этом образуются светлые (И-диски, изотропные) из тонких нитей белка актина и темные (А-диски, анизотропные) из толстых нитей белка миозина. По центру темных А-дисков проходит поперечная линия - мезофрагма, а по центру светлых И-дисков проходит поперечная линия - телофрагма.
Кроме сократительных белков актина и миозина в саркоплазме имеются еще вспомогательные белки - Тропонин и трпомиозин - они участвуют при обеспечении (поставке) сократительных белков ионами кальция, являющихся катализатором при взаимодействии актина и миозина.
Структурнофункциональной единицей миофибрилл является саркомер - это участок между двумя соседними телофрагмами. При сокращении между актиновыми и миозиновыми протофибриллами при наличии катализатора - ионов кальция образуются мостики или акто-миозиновые комплексы и это обеспечивает скольжение нитей навстречу друг к другу и укорочение саркомеров.
Канальцы саркоплазматического ретикулума располагаются в продольном направлении и образуют Л-трубочки (longentidunalis = продольные); они соединяются трубочками идущими в поперечном направлении в мышечном волокне - Т-трубочками (transversus=поперечно). Л- и Т-трубочки соединяются с цистернами - это своебразные емкости для ионов кальция. В стенках цистерн имеются кальциевые насосы, откачивающие ионы Са++ из саркоплазмы в цистерны. Нервный импульс в моторных бляшках переходит на сарколемму мышечного волокна, дальше по Т-трубочкам волна деполяризации проникает внутрь волокна, распространяется по Л-трубочкам и наконец волна деполяризации проходит по стенке цистерн. В момент прохождения волны деполяризации по мембране цистерны у последней повышается проницаемость для ионов Са++, и кальций выбрасывается в саркоплазму и подхватывается вспомогательными белками тропонином и тропомиозином и подносится к акто-миозиновому комплексу и при наличии АТФ происходит сокращение саркомера. Кальциевый насос быстро откачивает кальций обратно в цистерны - актомиозиновый комплекс распадается, поэтому происходит расслабление мышцы. Поступление нового импульса приводит к повторению всего цикла.
По строению и функциональным особенностям выделяют мышечные волокна I типа (красные м.в.), которые содержат много митохондрий, миоглобина (придает красный цвет), высокую активность фермента сукцинатдегидрогеназы, но мало миофибрилл. Красные м.в. добывают энергию для сокращения путем аэробного оксиления гликогена, т.е. нуждаются в дыхании. М.В. II типа (белые м.в.) содержат больше миофибрилл и относительно больше гликогена, зато меньше митохондрий и у них низка активность сукцинатдегидрогеназы. Белые м.в. энергию для сокращений получают путем анаэробного окисления гликогена, т.е. в дыхании не нуждаются.
Особо следует отметить так называемые клетки миосателлитоциты (МСЦ). МСЦ были обнаружены с помощью электронного микроскопа в 1961 году. С тех пор гистогенез и регенерация скелетной МТ рассматривается в связи с этим и МСЦ. Особенностью локализации МСЦ является то, что они располагаются между базальной пластинкой и сарколеммой м.волокна. В обычных условиях эти клетки имеют неольшие размеры (20-30 мкм в длину), палочковидное ядро с большим содержанием гетерохроматина, узкую цитоплазму окружающее ядро; органеллы представлены очень бедно. Актиновые и миозиновые протофибриллы в МСЦ не обнаруживаются. Физиологическая и репаративная регенерация ПП МТ соматического типа осуществляется за счет малодифференцированных элементов - МСЦ. При травме или большой физической нагрузке клетки МСЦ постепенно выходят из состава м.волокна, начинают делиться митозом и формируют популяцию миобластов. В последующем миобласты выстраиваются в "цепочку" и начинают сливаясь образовывать миотубулы - симпласт. Миотубулы в цитоплазме накапливают миофибриллы, митохондрии и превращаются в новые мыщечные волокна, которые включают в свой состав и симпластический компонент и резервные клетки - МСЦ.
Возрастные изменения поперечно-полосатой МТ соматического типа сопровождаются атрофией м.в., т.е. уменьшением количества и толщины миофибрилл, накоплением липофусцина и жировых включений в саркоплазме, значительным утолщением базальной мембраны вокруг сарколеммы.
ПП МТ сердечного (целомического)типа - развивается из висцерального листка спланхнатомов, называемой миоэпикардиальной пластинкой. В гистогенезе ПП МТ сердечного типа различают следующие стадии:
1. Стадия кардиомиобластов.
2. Стадия кардиопромиоцитов.
3. Стадия кардиомиоцитов.
Морфофункциональной единицей ПП МТ сердечного типа является кардиомиоцит (КМЦ). КМЦ контактируя друг с другом конец-в конец формируют функциональные мышечные волокна. При этом сами КМЦ отграничены друг от друга вставочными дисками, как особыми межклеточными контактами. Морфологически КМЦ - это высокоспециализированная клетка с локализованным в центре одним ядром, миофибриллы занимают основную часть цитоплазмы, между ними большое количество митохондрий; имеется ЭПС и включения гликогена. Сарколемма (соотв-ет цитолемме) состоит из плазмолеммы и базальной мембраны, менее выраженной по сравнению с ПП МТ скелетного типа. В отличие от скелетной МТ сердечная МТ камбиальных элементов не имеет. В гистогенезе кардиомиобласты способны митотически делиться и в то же время синтезировать миофибриллярные белки. Рассматривая особенности развития КМЦ следует указать, что в раннем детстве эти клетки после разборки (т,е, исчезновения) могут вступить в цикл пролиферации с последующей сборкой акто-миозиновых структур. Это является особенностью развития сердечных мышечных клеток. Однако в последующем способность к митотическому делению у КМЦ резко падает и у взрослых практически равна нулю. Кроме того в гистогенезе с возрастом в КМЦ происходит накопление включений липофусцина. Размеры КМЦ уменьшаются. Различают 3 разновидности КМЦ:
1. Сократительные КМЦ (типичные) - описание смотри выше.
2. Атипичные (проводящие) КМЦ - образуют проводящую систему сердца.
3. Секреторные КМЦ.
Атипичные (проводящие КМЦ - для них характерно:
- слабо развит миофибриллярный аппарат;
- мало митохондрий;
- содержит больше саркоплазмы с большим количеством включений гликогена.
Атипичные КМЦ обеспечивают автоматию сердца, так как часть их, расположенные в синусном узле сердца Р-клетки или водители ритма, способны вырабатывать ритмичные нервные импульсы, вызывающие сокращение типичных КМЦ; поэтому даже после перерезки нервов подходящих к сердцу, миокард продолжает сокращаться своим ритмом. Другая часть атипичных КМЦ проводят нервные импульсы от водителей ритма и импульсы от симпатических и парасимпатических нервных волокон к сократительным КМЦ.
Секреторные КМЦ - располагаются в предсердиях; под электронным микроскопом в цитоплазме имеют ЭПС гранулярный, пластинчатый комплекс и секреторные гранулы, в которых содержится натрийуретический фактор или атриопептин - регулирующий артериальное давление. Кроме того секреторные КМЦ вырабатывают гликопротеины, которые соединяясь с липопротеинами крови препятствуют образованию тромбов в кровеносных сосудах.
Регенерация ПП МТ сердечного типа. Репаративная регенерация (после повреждений) - очень плохо выражена, поэтому после повреждений (пр.: инфаркт) сердечная МТ замещается соединительнотканным рубцом. Физиологическая регенерация (восполнение естественного износа) осуществляется путем внутриклеточной регенерации - т.е. КМЦ не способны делиться, но постоянно обновляют свои изношенные органоиды, в первую очередь миофибриллы и митохондрии.
Мионейральная ткань - входит в состав мышц расширяющих и суживающих зрачок, а также в состав цилиарной мышцы глаза. Мионейральная ткань радужки развивается из глазного бокала, т.е. зачатка нервной ткани - нервной трубки. Некоторые авторы источником мионейральной ткани считают нервный гребень (ганглиозная пластинка). Мионейральная ткань есть только у позвоночных и является их эволюционным приобретением. У рыб, амфибий и млекопитающих мионейральная ткань представлена гладкими миоцитами, тогда как у рептилий и птиц - миосимпластами.
Миоэпителиальные эелементы - располагаются вокруг концевых секреторных отделов слюнных, потовых и молочных желез. Источник развития - эктодерма. Миоэпителиальные клетки отросчаты, в цитоплазме имеют сократительные белки актин и миозин. Отростками миоэпителиоциты охватывают концевой отдел железы и при сокращении способствуют выведению секрета из секреторного отдела в выводные пути.
Кроме перечисленых сократительных структур в организме существуют большое число клеток, содержащие в цитоплазме сократительные белки и следовательно с выраженной сократительной способностью - это так называемые миоидные клетки. Так, миоидные клетки обнаружены в эпифизе, мозжечке, паутинной оболочке мозга и даже в головном мозге. Природа этих клеток во многом не ясна, морфология и функция их изучено недостаточно.

 

Лекция 10:

 

Мозжечок. Кора больших полушарий.

МОЗЖЕЧОК - является центральным органом равновесия и координации движений. Различают серое и белое вещество мозжечка. Серое вещество представлено…   Лекция 11:

Кроветворение. Современные представления о кроветворении. План лекции: 1. Этапы кроветворения в онтогенезе. 2. История развития теории кроветворения. 3. Современные представления о кроветворении. 4. Особенности созревания отдельных видов клеток крови.

 

Знания данной темы необходимы для усвоения темы "Кровь" и "Органы кроветворения", практическое значение обусловлено значением системы крови в жизнедеятельности организма.
Кроветворение в эмбриональном периоде начинается очень рано, что объясняется необходимостью транспортировки к тканям и органам зародыша питательных веществ и кислорода, удаления шлаков обмена. В онтогенезе человека в кроветворении выделяют 3 этапа:
I этап - мегалобластическое кроветворение: в конце 2-ой недели эмбрионального развития в стенке желточного мешка из мезенхимы формируются первые очаги кроветворения. Мезенхимные клетки теряют отростки, округляются, и располагаясь плотно друг к другу образуют кровяные островки. Клетки, расположенные в центре кровяных островков, дифференцируются в первые форменные элементы крови - мегалобласты, а клетки расположенные в периферии островков уплощаются и дифференцируются в эндотелиоциты, т.е. в стенку первых кровеносных сосудов. Мегалобласты относятся к эритроидному ряду и являются первичными эритробластами, но в отличие от обычных эритроцитов имеют ядро, гипербазофильную цитоплазму, содержат меньшее количество гемоглобина, причем гемоглобин Р (примитивный). Диаметр мегалобластов 10 и более мкм, т.е. эти клетки крупные, отсюда и название этапа - мегалобластический. Предполагается, что в составе кровяных островков, кроме мегалобластов, в небольшом количестве содержатся стволовые кроветворные клетки. Кроветворение на I этапе происходит интраваскулярно (внутри сосуда). Мегалобластическое кроветворение продолжается в течении 3-4 недели эмбрионального развития.
II этап - гепатолиенальное кроветворение, начинается во 2-ом месяце внутриутробного развития. На этом этапе центром кроветворения становится печень, параллельно кроветворение начинается и в селезенке. Стволовые кроветворные клетки из кровяных островков желточного мешка по крови попадают в тело зародыша, мигрируют в печень и селезенку, и в этих органах образуют очаги кроветворения. В отличие от I этапа, кроветворение на II этапе происходит экстраваскулярно, т.е. вне сосудов. Специфическое микроокружение для созревающих клеток крови создают в печени гепатоциты, а в селезенке - мезенхимные клетки. На II этапе в очагах кроветворения образуются вторичные эритробласты - нормобласты (эритроидные клетки диаметром 6-8 мкм), помимо нормобластов формируются гранулоциты, Т- и В-лимфоциты.
В начале 4-го месяца эмбрионального развития начинается III этап- медулотимолимфоидное кроветворение. К этому сроку кроветворение в печени затухает, в селезенке сохраняется только лимфоцитопоэз. Центром кроветворения становятся красный костный мозг и тимус, наряду с этими органами начинается лимфоцитопоэз и в периферических лимфоидных органах - лимфатических узлах, миндалинах, лимфоидных скоплениях слизистой оболочки пищеварительной, мочеполовой и дыхательной системы.
Первая попытка обобщения имеющихся материалов в виде теории кроветворения была предпринята в 1880 году Эрлихом - была предложена дуалистическая теория кроветворения: из отдельных 2- родоначальных клеток начинается и происходит лимфоцитопоэз и миелопоэз. В начале ХХ века Ашоф и Шиллинг предложили триалистическую теорию кроветворения - т.е. к 2-м родоначальным клеткам лимфоцитопоэза и миелопоэза был добавлен третья отдельная родоначальная клетка для моноцитопоэза.
Существовала еще полифилитическая теория, предполагающая наличие отдельных родоначальных клеток для каждой разновидности форменных элементов крови.
Основоположником современной унитарной теории кроветворения является отечественный гистолог Максимов (работал на кафедре гистологии ВМА в С-Петербурге). Еще в 1907 году Максимов утверждал, что все клетки крови развиваются из единой одной и той же родоначальной клетки; мало того, он назвал эту клетку - морфологически это малый лимфоцит. Однако имеющиеся в то время методы исследований не позволяли экспериментально доказать верность этой теории. Максимов в ходе гемоцитопоэза клетки крови подразделял на 4 группы:
1 группа - клетки с неограничанной возможностью превращений, т.е. родоначальная клетка, способная развиваться и превратиться в любой форменный элемент крови.
2 группа - клетки с частично ограниченный способностью развиваться в ту или иную форму клеток крови.
3 группа - клетки со строго ограничанной возможностью развития.
4 группа - клетки крови не способные изменяться.
Последующие исследования показали верность унитарной теории кроветворения Максимова. Отечественные ученые Кассирский, Алексеев внесли существенный вклад в области цитохимических и электронно-микроскопических исследований клеток крови в разных стадиях гемоцитопоэза. Канадские исследователи Till и Mc-Culloch при помощи оригинальной серии экспериментов со смертельно облученными мышами доказали существование стволовых кроветворных клеток (СКК).
Современная схема кроветворения в варианте, который Вы будете изучать, составлена в 1973 году Чертковым и Воробьевым. Согласно этой схеме все клетки крови в процессе гемцитопоэза подразделены на 6 классов.
1-й класс - полипотентные стволовые кроветворные клетки (ПСКК). Морфологически выглядат как малые темные лимфоциты. В норме у здорового человека у ПСКК обмен веществ на низком уровне, 80% ПСКК находится в G0 фазе, т.е. в покое - не делятся. ПСКК полипотентны - могут дифференцироваться в любую клетку крови, способны к самоподдержанию - автоматически поддерживается определенное количество ПССК в организме. При необходимости способны к ускоренной пролиферации, 1 клетка может дать до 100 митозов. Активность ПСКК регулируется микроокружением и гуморально - гемопоэтинами.
2-й класс - полустволовые клетки (ПСК) - клетки предшественники миелопоэза, клетки предшественники лимфопоэза. Взаимопереход этих клеток еще возможен при изменении специфического микроокружения. Морфологически выглядат как малые темные лимфоциты.
3-й класс - унипотентные предшественники, имеется отдельный предшественник для каждого форменного элемента крови. Взаимопереход между направлениями дифференцировки становится невозможным. Морфологически выглядат как малые темные лимфоциты.
Если все клетки 1-3 класса между собой морфологически не различимы и все выглядат как малые темные лимфоциты, то начиная с 4-го класса созревающие клетки становятся морфологически идентифицируемыми.
4-й класс - бластные клетки, дифференцируются в строго определенном направлении, морфологически различимы.
5-й класс - созревающие клетки. В клетках появляются специфические для каждой клетки структуры, клетки постепенно теряют способность к делению.
6-й класс - зрелые клетки крови.
Особенности созревания отдельных видов клеток крови:
В 1-классе - ПСКК
Во 2-ом классе - ПСК (общая клетка предшественница миелопоэза)
В 3-м классе - КОЕэ ( колония образующая единица эритроцитов )
В 4-ом классе - эритробласт (в ядре преобладает эухроматин, имеются четкие ядрышки); активно делятся.
В 5-ом классе - клетка проходит превращения: проэритробласт?базофильный эритробласт (базофилия цитоплазмы из-за обилия РНК, активно делятся)?полихроматофильный эритробласт (последняя клетка, способная митозу, накапливается Hb, РНК уменьшается)?оксифильный эритробласт (оксифилия из-за увеличения Hb, исчезает ядро, клетка теряет способность к митозу).
В 6-м классе - из красного костного мозга выходит ретикулоцит ("сетчатая клетка"); имеет в цитоплазме остатки органоидов, выявляемых при окраске специальными красителями в виде нитей и зерен, придающих клетке сетчатый рисунок (отсюда и название); в течении 1-х суток теряет остатки органоидов и дозревает в зрелый эритроцит.
В норме у здорового человека физиологическая регенерация в эритроидном ростке идет за счет размножения клеток IV-V классов - это гомопластический эритропоэз. После кровопотерь, отравлений гемолитическими ядами, облучения ионизирующими лучами наряду с IV-V классом начинают усиленно размножаться и клетки I-III классов - это гетеропластический эритроцитопоэз. В целом в процессе эритропоэза в клетках происходят следующие основные изменения:
1. Накапливается гемоглобин.
2. Клетка приобретает специфическую форму двояковогнутого диска, уменьшается в размерах.
3. Исчезает ядро и органоиды.
Гранулоцитопоэз
Гранулоцитопоэз идет по схеме:
В 1-ом классе ПСКК - Во 2-ом классе ПСК-предшественница миелопоэза - В 3-ем классе унипотентная предшественница базофилов, эозинофилов и нейтрофилов - В 4-ом классе нейтрофильный, базофильный и нейтрофильный миелобласт - В 5-ом классе клетки проходят через следующие превращения: базофильный, эозинофильный и нейтрофильный промиелоциты (активно делятся, в цитоплазме появляются первичные гранулы)?базофильный, эозинофильный и нейтрофильный миелоцит (активно делятся, появляются вторичные гранулы в цитоплазме) - базофильный, эозинофильный и нейтрофильный метамиелоцит (клетки не делятся, в цитоплазме много первичных и вторичных гранул). В 6-ом классе юные гранулоциты превращаются вначале в палочкоядерные, а потом в сегментоядерные гранулоциты. У здорового человека гомопластический гранулоцитопоэз идет за счет деления клеток 5-го класса, а гетеропластический гранулоцитопоэз при патологии - за счет деления клеток 1-4 классов.
Общие изменения при гранулоцитпоэзе:
1. Уменьшение размеров клеток.
2. Уплотнение ядра, форма ядра изменяется от округлой до сегментированного.
3. В цитоплазме накапливается специфическая (вторичная) зернистость.
Лимфоцитопоэз
В 1-ом классе ПСКК - Во 2-ом классе ПСК-предшественница лимфоцитопоэза?В 3-ем классе Унипотентная предшественница Т- и В-лимфоцитопоэза (клетки 1-3 класса находятся в костном мозге) - В 4-ом классе Т-лимфобласты (в тимусе) и В-лимфобласты (в лимфоидных органах) - В 5-ом классе Т- и В-пролимфоциты?В 6-ом классе большие, средние, малые лимфоциты (или субпопуляции Т- и В-лимфоцитов). Отличительной особенностью лимфоцитопоэза является способность клеток 6-го класса к переходу обратно в 4-й класс (бласттрансформация зрелых лимфоцитов); морфологически дифференцировать клетки разных классов очень трудно.

 

Лекция 11:

 

Органы кроветворения и иммунологической защиты.

В процессе эволюции происходит изменение топографии органов кроветворения (ОКТ), усложнение их строения и дифференциация функций. 1. У…  

Периферические органы кроветворения. План лекции: 1. Развитие, строение, функции, возрастные особенности лимфатических узлов. 2.Развитие, строение, функции, возрастные особенности селезенки. 3. Особенности строения и функций гемолимфатических узлов. 4. Лимфоидные скопления (фолликулы) под эпителием слизистых оболочек. Особенности строения и функции.

 

В периферических органах кроветворения у здорового взрослого человека происходит только лимфоцитопоэз. К ним относятся лимфатические узлы, селезенка, гемолимфатические узлы, лимфоидные скопления (фолликулы) под эпителием слизистой оболочки пищеварительной, мочеполовой, дыхательной системы (классификацию смотри выше).


Лимфатические узлы - насчитывается в организме человека до 400 штук лимфатических узлов. ЛУ в эмбриональном периоде закладываются в конце 2 месяца из мезенхимы по ходу лимфатических сосудов. Из мезенхимы образуется строма (капсула и трабекулы-перегородки) и основа органа - ретикулярная ткань. В закладывающуюся ретикулярную ткань вскоре заселяются кроветворные клетки из ККМ и тимуса.
Строение - орган имеет бобовидную форму. С выпуклой стороны в орган входят приносящие лимфатические сосуды., с вогнутой стороны - ворот выходят вены, выносящие лимфатические сосуды и входят артерии и нервы. Лимфатические узлы состоят из стромы и паренхимы. Строма представлена капсулой из плотной неоформленной сдт и отходящих от капсулы трабекулами-перегородками из рыхлой сдт. Основу паренхимы составляет ретикулярная ткань, пронизанная кровеносными синусами, и несущая на своих петлях лимфоциты. Скопления лимфоцитов в корковом слое (периферическая зона, под капсулой) образуют лимфатические фолликулы (или узелки), а в мозговом веществе образуют мякотные тяжи. Лимфоидная ткань между лимфатическими узелками и мякотными тяжами называется паракортикальной зоной. В лимфатических узелках различают реактивный центр (или центр размножения), мантийную зону. Т-лимфоциты (40-70% всех лимфоцитов органа) преимущественно располагаются в паракотрикальной зоне, а В-лимфоциты (20-30%) - в лимфатических узелках и в мякотных тяжах.
В лимфатических узлах имеются кровеносные синусы:
1. Краевой синус - между капсулой и лимфатическими узелками.
2. Краевые синусы продолжаются в промежуточные или вокругузелковые синусы - между трабекулой и лимфатическим узелком.
3. Промежуточные синусы продолжаются в мозговые синусы - между мякотными тяжами.
4. Мозговые синусы в воротах собираются в центральный синус, с которого лимфа выносится выносящими лимфатическими сосудами.
Стенка синусов выстлана плоскими полигональными клетками, которые мало отличаются от обычного эндотелия. Некоторые авторы их называют береговыми ретикулярными клетками. Выстилка синусов не сплошная, между клетками остаются щели - фенестры, базальная мембрана отсутствует; все это облегчает поступление в протекающую по ним лимфу лимфоцитов. Среди эндотелиоцитов встречается значительное количество макрофагов, которые из протекающей лимфы фагоцитируют инородные частицы и микроорганизмы, перерабатывают антигены и передают В-лимфоцитам, т.е. запускают антигензависимый лимфоцитопоэз и механизм гуморального иммунитета.
Функции лимфоузлов:
1. Участие в лимфоцитопоэзе - в лимфоидной ткани органа из Т- и В-предшественников образуются зрелые лимфоциты и плазмоциты.
2. Фильтрация и очистка протекающей лимфы.
3. Обогащение протекающий лимфы лимфоцитами.
Морфологические отличия лимфоузлов у новорожденных:
- капсула тонкая, отсутствуют трабекулы;
- лимфоидная ткань диффузная, нет четких узелков и тяжей;
- синусы не определяются.
ГЕМОЛИМФАТИЧЕСКИЕ ОРГАНЫ
I. Селезенка - гемолимфатический орган, расположенный по ходу кровеносных сосудов. В эмбриональном периоде закладывается из мезенхимы в начале 2-го месяца развития. Из мезенхимы образуются капсула, трабекулы, ретикулярнотканная основа, гладкомышечные клетки. Из висцерального листка спланхнотомов образуется брюшинный покров органа. В дальнейшем стволовые кроветворные клетки из стенки желточного мешка заселяют ретикулярную ткань и на 4-м месяце орган становится, наряду с печенью, центром кроветворения. К моменту рождения в селезенке миелопоэз прекращается, сохраняется и усиливается лимфоцитопоэз.
Строение. Селезенка состоит из стромы и паренхимы. Строма состоит из фиброзно-эластической капсулы с небольшим количеством миоцитов, снаружи покрытой мезотелием, и отходящих от капсулы трабекул.
В паренхиме различают красную пульпу и белую пульпу. Красная пульпа - это основа органа из ретикулярной ткани, пронизана синусоидными сосудами, заполненными форменными элементами крови, преимущественно эритроцитами. Обилие эритроцитов в синусоидах придает красной пульпе красную окраску. Стенка синусоидов покрыта вытянутыми эндотелиальными клетками, между ними остаются значительные щели. Эндотелиоциты располагаются на несплошной, прерывистой базальной мембране. Наличие щелей в стенке синусоидов дает возможность выхода эритроцитов из сосудов в окружающую ретикулярную ткань. Макрофаги, содержащиеся в большом количестве как в ретикулярной ткани, так и среди эндотелиоцитов синусоидов фагоцитируют поврежденные, стареющие эритроциты, поэтому селезенку называют кладбищем эритроцитов. Гемоглобин погибших эритроцитов доставляется макрофагами в печень ( белковая часть - глобин используется при синтезе желчного пигмента билирубина) и красный костный мозг (железосодержащий пигмент - гем передается созревающим эритроидным клеткам). Другая часть макрофагов участвует в клеточной кооперации при гуморальном иммунитете (см. тему "Кровь").
Белая пульпа селезенки представлена лимфатическими узелками. В отличие от узелков других лимфоидных органов лимфатический узелок селезенки пронизывается артерией- a. sentralis. В лимфатических узелках выделяют зоны:
1. Периартериальная зона - является тимусзависимой зоной.
2. Центр размножения - содержит молодые В-лимфобласты (В-зона).
3. Мантийная зона - содержит преимущественно В-лимфоциты.
4. Маргинальная зона - соотношение Т- и В-лимфоцитов = 1:1.
В целом в селезенке В-лимфоциты составляют 60%, Т-лимфоциты - 40%.
Отличия селезенки новорожденных:
1.Слабо развиты капсула и трабекулы.
2. Лимфоидная ткань диффузна, нет четких узелков
3. В имеющихся лимфатических узелках центры размножения не выражены.
Функции селезенки:
1. Участие в лимфоцитопоэзе (Т- и В-лимфоцитопоэз).
2. Депо крови (в основном для эритроцитов).
3. Элиминация поврежденных, стареющих эритроцитов
4. Поставщик железа для синтеза гемоглобина, глобина - для билирубина.
5. Очистка проходящий через орган крови от антигенов.
6. В эмбриональном периоде - миелопоэз.
Регенерация - очень хорошая, но тактику хирурга при повреждениях чаще определяет особенности кровоснабжения, в силу чего очень трудно остановить паренхиматозное кровотечение в органе.
Гемолимфатические узлы (ГЛУ)- встречаются по ходу крупных сосудов (брюшная и грудная аорта, рядом с почечными артериями). Развитие в эмбриональном периоде, гистологическое строение сходны с лимфатическими узлами, но имеются различия:
1. ГЛУ имеют меньшие размеры по сравнению с лимфатическими узлами.
2. Корковый тоньше, лимфатические узелки мелкие.
3. Мякотные тяжи тоньше, их мало.
4. Через синусы протекает и лимфа, и кровь.
5. Миелопоэз продолжается еще некоторое время после рождения.
6. Раньше подвергается инволюции (к 25 годам).
ЛИМФОЭПИТЕЛИАЛЬНЫЕ ОРГАНЫ (ЛЭО) - лимфоидные скопления под эпителием слизистых оболочек. К ним относятся следующие:
1. Миндалины глоточного кольца.
2. Лимфоидные фолликулы в слизистой оболочке пищеварительной, дыхательной, мочеполовой системы.
3. Лимфоидные скопления под эпителием кожи.
Отличительные особенности, общие свойства:
1. Не имеют четко выраженной капсулы, располагаются в рыхлой с.д.т.
2. В ЛЭО устанавливается тесная взаимосвязь между эпителиальной и лимфоидной тканями: топографически - лимфоциты инфильтрируют эпителий; функционально - кооперация при синтезе антител (В-лимфоциты синтезируют белковую часть, а эпителиоциты участвуют при синтезе углеводной части); эпителиоциты могут выполнять функции макрофагов, т.е. способны захватывать, концентрировать, перерабатывать и передавать антигены В-лимфоцитам.
3. В ЛЭО больше содержания В-лимфоцитов.
4. ЛЭО обеспечивают преимущественно местную защитную реакцию и формируют II защитный барьер для антигенов, прорвавшихся через I защитный барьер - эпителий.

 

Лекция 13:

 

Мужская половая система.
1 Источники, закладка и развитие органов мужской половой системы.
2 Гистологическое строение семенников.
3 Строение и функции придатка яичка.
4 Строение и функции дополнительных половых желез.
5 Нормальные показатели спермы у здорового мужчины.

I. Эмбриональное развитие органов мужской половой системы.

II. Гистологическое строение семенников (яичек). Яичко снаружи покрыто брюшиной, под брюшинной оболочкой находится капсула из…  

III Придаток яичка (эпидедимис).

Канал придатка выстлан 2-х рядным мерцательным эпителием, потому просвет канала на срезе имеет ровную поверхность; в средней оболочке по сравнению с… Функции придатка: секрет органа разбавляет сперму; завершается стадия… Предстательная железа (простата) – в эмбриональном периоде образуется путем выпячивания стенки мочеполового синуса и…

I. Эмбриональное развитие органов женской половой системы.

Закладка и развитие половой системы тесно связано с мочевыделительной системой, а именно с I почкой. Начальный этап закладки и развития органов…   В половые валики начинают мигрировать первичные половые клетки – гонобласты. Гонобласты впервые появляются в составе…

Сердечно-сосудистая система.

Значение сердечно-сосудистой системы (ССС) в жизнедеятельности организма, а следовательно и знания всех аспектов этой области для практической…   Лекция 16:

Органы чувств.

Человеческий организм, как любая живая открытая система, постоянно об-менивается веществами с окружающей средой. В организм поступают необхо-димые…   Лекция 17:

Эндокринная система. Центральные эндокринные железы.

Основные этапы развития знаний о эндокринных железах. Морфологи изучая различные железы организма обнаружили, что существуют железы лишенные…   Лекция 18:

Периферические органы эндокринной системы.

  Щитовидная железа закладывается на 3-й неделе эмбрионального развития как…  

Дыхательнаясистема.

План: 1.Общая морфо-функциональная характеристика дыхательной системы. 2. Эволюция дыхательной системы. 3. Эмбриональные источники, закладка и… Дыхательная система выполняет следующие функции: 1. Газообмен (обогащение… Бронхи по калибру и особенностям гистологического строения подразделяются на крупные, средние и мелкие бронхи. …

Эмбриональные источники и развитие, строение зубов.

Лекция 21: Мочевыделительная система. План: 1. Общая характеристика, функции мочевыделительной системы. 2. Источники, принцип строения 3-х… В результате обмена веществ в клетках и тканях образуется энергия, но… В базальной части эпителиоцитов проксимальных и дистальных извитых канальцев имеется исчерченность, образованная…

Пищеварительная система: источники и эмбриональное развитие, общая морфо-функциональная характеристика, общий принцип строения.

План: 1. Отделы пищеварительной трубки, их состав и функции. 2. Общий принцип строения пищеварительной трубки, его особенности в различных… В состав пищеварительной системы входят пищеварительный тракт и крупные… ВРЕЗКА 1: Пищеварительная система. Развитие лица и зубочелюстного аппарата. Органы ротовой полости – губа, щека,…

Слюнные железы.