рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Анализ технического задания

Анализ технического задания - раздел Физика, Решение обратной задачи вихретокового контроля Анализ Технического Задания. Основная Задача Вихретокового Контроля С Помощью...

Анализ технического задания. Основная задача вихретокового контроля с помощью накладных преобразователей состоит из двух подзадач Прямой задачи расчета вносимой ЭДС в присутствии немагнитного проводящего листа с произвольной зависимостью ЭП по глубине.

Обратной задачи нахождения зависимости ЭП как функции глубины в немагнитном проводящем листе по результатам измерений определенного количества комплексных значений вносимой ЭДС. 2.1 Прямая задача ВТК Полагая зависимость ЭП от глубины известной проведем ее кусочно-постоянную аппроксимацию.

Это позволяет свести исходную задачу к расчету ЭДС в многослойном листе, в каждом слое которого ЭП принимает постоянное значение.

Как показано в работе 50 , подобная модель вполне адекватно описывает задачу и дает отличное согласование с результатами опытов.

Рекуррентные формулы для произвольного количества слоев хорошо известны 1-5,36, 42,43,50-52 . Таким образом решение прямой задачи в рамках принятой модели затруднений не вызывает. 2.2 Обратная задача ВТК С математической точки зрения обратная задача ВТК относится к классу некорректных задач 49 и ее решение неустойчиво т.е. при сколь угодно малой погрешности исходных данных набора измеренных вносимых ЭДС погрешность решения рассчитанных локальных значений ЭП может быть сколь угодно большой, а одному набору измерений может отвечать много формально бесконечно много распределений ЭП по глубине.

При попытке расчета некорректной задачи как корректной, вычислительный процесс за счет неустойчивости сваливается в заведомо худшую сторону. В нашем случае это означает получение распределения ЭП, которое, хотя и обеспечивает требуемое совпадение измеренной и вычисленной ЭДС, но является явно нереальным из-за осцилляций.

Следует отметить, что амплитуда и частота осцилляций распределения ЭП растут при увеличении числа независимых параметров аппроксимации ЭП коэффициентов полинома в случае полиномиальной аппроксимации, количества узлов при сплайн-аппроксимации и т.д При наличии погрешности измерения вносимой ЭДС, превышающей на несколько порядков вычислительную погрешность и на практике составляющей не менее 0.5-1 от измеряемого сигнала, ситуация значительно осложняется.

Учитывая вышеизложенное для выделения из множества допустимых распределений решения, наиболее удовлетворяющего физической реальности, в алгоритмах решения обратной задачи необходимо использовать дополнительную априорную информацию. На практике это реализуется введением некоторых критериев, позволяющих отличить решение, отвечающее практике, от физически нереального. Для решения обратной задачи ВТК предлагались три возможные стратегии 46 1. Решение большого числа прямых задач и табуляция результатов для различных моделей.

Измеренные данные с помощью некоторых критериев сравниваются с таблицей. Подход очень экстенсивный и требующий проведения избыточного числа расчетов, поэтому на практике встречающийся редко. 2. Условная минимизация невязки измеренных и расчитанных данных. Очень мощный и универсальный метод, широко распространен для решения обратных задач в различных областях техники 41,44,49 . Позволяет восстанавливать произвольное распределение ЭП по глубине вообще говоря произвольное 3D распределение, но требуется довольно сложная процедура расчета. 3. Аналитическое инвертирование ядра оператора и использование алгоритма, зависящего от ядра уравнения 46 . Потенциально самый малозатратный метод, однако как и все аналитические, применим далеко не всегда.

В нашем случае остановимся на втором подходе, поскольку он сочетает в себе универсальность, точность и относительную простоту реализации.

В целом процесс решения обратной задачи сводится к итерационному решению прямой задачи для текущей оценки распределения ЭП и внесению изменений в эту оценку в соответствии с величиной невязки. 2.3 Модель задачи Приведем основные положения, на основе которых будет построена модель нашей задачи ОК представляет из себя находящуюся в воздухе проводящую пластину толщиной Н состоящую из N плоско-параллельных слоев толщиной bi. В пределах каждого слоя удельная электропроводность имеет постоянное значение т.е. распределение по глубине аппроксимируется кусочно-постоянной зависимостью.

Возбуждающая и измерительная обмотки ВТП заменяются нитевидными моделями. Следует отметить, что это предположение сказывается лишь на решении прямой задачи, а проведя интегрирование можно получить выражения для катушек конечных размеров. Для численного моделирования реальных распределений ЭП применим пять типов аппроксимации сплайном, кусочно-постоянную, кусочно-линейную, экспоненциальную и гиперболическим тангенсом.

В процессе решения прямой задачи с их помощью вычисляются значения в центральных точках слоев пластины. 2.4 Анализ литературы 2.4.1

– Конец работы –

Эта тема принадлежит разделу:

Решение обратной задачи вихретокового контроля

Объекты контроля подвергаются термообработке закалка, отпуск или насыщению внешних слоев различными веществами, что приводит к изменению… Задача заключается в определении, в рамках допустимой погрешности, зависимости… Метод контроля заключается в измерении определенного количества комплексных значений вносимой ЭДС на различных…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Анализ технического задания

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Зарубежные методы решения
Зарубежные методы решения. Решению обратной задачи ВТК посвящен ряд работ в зарубежных изданиях. Следует отметить монографию 38 , в которой рассмотрены случаи импульсного возбуждения, а оперируют в

Отечественные методы решения
Отечественные методы решения. Подход, в значительной мере аналогичный работам 45-51 был предложен в работе 41 . Из-за небольшого объема в ней уделено недостсточное внимание вопросам практической ре

Прямая задача ВТК для НВТП
Прямая задача ВТК для НВТП. Уравнение Гельмгольца для векторного потенциала Взаимодействие преобразователя с объектом контроля определяется системой уравнений Максвелла в дифференциальной форме 6 3

Поле витка над многослойной средой
Поле витка над многослойной средой. Введем цилиндрическую систему координат r z. Пусть - ток, протекающий по нитевидной возбуждающей обмотке с радиусом R1, находящейся на расстоянии h от N-слойной

Воздействие проводящего ОК на НВТП
Воздействие проводящего ОК на НВТП. Для большинства инженерных расчетов можно использовать нитевидную модель обмоток НВТП использованную в п 3.2 . При данном упрощении получаем - напряженность элек

Обратная задача ВТК для НВТП
Обратная задача ВТК для НВТП. Решение обратной задачи ВТК состоит в нахождении зависимости h распределения электропроводности по глубине пластины используя набор из N измеренных с помощью НВТП внос

Корректность по Тихонову
Корректность по Тихонову. Задача 5.1 называется корректной по Тихонову на множестве корректности М X если точное решение задачи существует и принадлежит М принадлежащее М решение единственно для лю

Метод регуляризации
Метод регуляризации. Метод основан на стабилизации невязки Ax, f при помощи вспомогательного неотрицательного функционала x. Идея метода состоит в том, чтобы минимизировать обладающий сглаживающими

Метод квазирешений
Метод квазирешений. Метод использует одну из форм критерия невязки и заключается в сведении невязки к минимуму на некотором непустом множестве P, содержащем подмножество искомых решений. Квазирешен

Метод невязки
Метод невязки. Рассмотрим множество Р формальных решений уравнения 5.1 Р x F Ax, f , где f - приближенная правая часть 5.1 , известная с погрешностью. В качестве приближенного решения 5.1 нельзя бр

Метод штрафных функций
Метод штрафных функций. Идея метода состоит в замене экстремальной задачи с ограничениями 6.1 на задачу безусловной минимизации однопараметрической функции , 0 6.2 Непрерывную функцию х называют шт

Релаксационные методы
Релаксационные методы. Релаксационным методом называют процесс построения последовательности точек хk хk X , хk 1 хk k 0,1 . Основными представителями этого класса являются методы спуска, алгоритм

Метод условного градиента
Метод условного градиента. Идея метода заключается в линеаризации нелинейной функции х. В этом методе выбор направления спуска осуществляется следующим образом 1. Линеаризируя функцию х в точке хК

Метод проекции градиента
Метод проекции градиента. Этот метод является аналогом метода градиентного спуска, используемого в задачах без ограничений. Его идея состоит в проектировании точек, найденных методом наискор

Метод множителей Лагранжа
Метод множителей Лагранжа. Идея метода состоит в отыскании седловой точки функции Лагранжа задачи 6.1 . Для нахождения решения вводится набор переменных i, называемых множители Лагранжа, и составля

Одномерная минимизация
Одномерная минимизация. Несмотря на кажущуюся простоту, для широкого класса функций решение задачи минимизация функции одного переменного х сопряжено с некоторыми трудностями. С одной сторон

Алгоритм методов
Алгоритм методов. I. h0 b0 - a0 , k 1 , 0.5,1 , h1 h0 , h2 h0 - h1 , c1 a0 h2 , d2 b0 - h2 II. Вычислить текущие значения ck и dk и действовать в соответствии с ними ck dk ck dk ak ak-1 ck-1 bk dk-

Аппроксимации при численном моделировании
Аппроксимации при численном моделировании. Для построения моделей реальных распределений ЭП возможно применение целого ряда аппроксимаций. Все они могут быть разделены на два класса. 1. Аппр

Модели реальных распределений электропроводности
Модели реальных распределений электропроводности. Модель задачи должна описывать некоторую пластину, подвергнутую поверхностной обработке. Для определенности зададим толщину пластины равной

Восстановление по зашумленным данным
Восстановление по зашумленным данным. Рассмотренные в данном разделе результаты демонстрируют возможность восстановления распределений ЭП в реальных условиях. Графики представлены в первых четырех

Восстановление с учетом дополнительной информации
Восстановление с учетом дополнительной информации. С целью улучшения результатов восстановления в реальной обстановке, осложненной наличием зашумленных данных, следует использовать более жесткие ог

Восстановление при различном возбуждении
Восстановление при различном возбуждении. Для выбора необходимого количества измерений Uвн и соответствующих им частот возбуждения ВТП рассмотрим три возможных диапазона частот, в каждом из которых

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги