рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Механизмы свечения цинк-сульфидных электролюминофоров

Механизмы свечения цинк-сульфидных электролюминофоров - Дипломная Работа, раздел Физика, Некоторые особенности спектрально-кинетических характеристик люминофоров на основе ZnS:Cu Механизмы Свечения Цинк-Сульфидных Электролюминофоров. Цинк-Сулфидные Люминоф...

Механизмы свечения цинк-сульфидных электролюминофоров. Цинк-сулфидные люминофоры обладают высокой яркостью и наиболее широко употребляются сейчас на практике.

Хотя свечение электролюминофоров, активированных медью, серебром, марганцем или другими примесями при возбуждении переменным электрическим полем почти не отличается по спектру от свечения соответствующих фотолюминофоров, приготовление образцов, способных светиться в поле, имеет свои особенности.

Основной из них является введение повышенного количества меди порядка 10-3 г Сu на 1 г ZnS по сравнению с фотолюминофорами. Обычно это связано с необходимостью получения в кристаллах вкраплений второго вещества сульфида меди, которые создают условия концентрации поля в тонких слоях образца.

Таким образом, в отличие от фотолюминофоров, представляющих собой однофазную систему, люминофоры, возбуждаемые электрическим полем представляют собой двухфазную систему, образованную сульфидом цинка ZnS n-типа проводимости основа и сульфидом меди CuxS p-типа проводимости. Принято разделять все явления электролюминесценции на два класса относящиеся к эффекту Лосева и относящиеся к эффекту Дестрио. В первом случае кристаллы электролюминофора непосредственно соприкасаются с электродами, и таким образом носители заряда могут непосредственно проникать в кристаллы.

Впервые такого рода свечение твердых веществ в электрическом поле наблюдал в 1923 г. Лосев на карбиде кремния, который использовался в качестве кристаллического детектора, причем люминесценция наблюдалась всегда непосредственно, вблизи контактов. Второй вид электролюминесценции - электролюминесценцию порошкообразных фосфоров, которым посвящена данная глава, наблюдал впервые в 1936 г. Дестрио.

Это явление по целому ряду свойств отличается от свечения карбида кремния. Вещества, которым оно свойственно, имеют гораздо большее удельное сопротивление, чем карбид кремния, причем свечение может происходить и в том случае, когда люминофор помещен в диэлектрик. При этом свечение, как правило, можно получить только при возбуждении люминофоров переменным электрическим полeм. Первое объяснение явлений электролюминесценции было предложено Дестрио 17 , который предположил, что центры люминесценции могут возбуждаться благодаря соударениям с электронами, ускоряемыми полем.

Теория этого явления была подробно развита Кюри 18 , но она не могла объяснить, почему явления электролюминесценции имеют место уже при сравнительно небольших напряженностях поля порядка десятков киловольт на 1 см. В работах Пайпера и Вильямса 19 предполагается, что ударная ионизация центров люминесценции происходит около барьера обеднения вблизи отрицательного электрода, где обеспечивается большая величина напряженности поля, необходимая для этого процесса.

Электроны, участвующие в процессе ударной ионизации, освобождаются полем с уровней захвата. Эта теория рассматривает явления, происходящие в монокристаллах. Для объяснения процессов, происходящих в порошкообразных люминофорах, помещенных в диэлектрик, Залм 20 предположил, что источником электронов является поверхностный слой Сu2S, покрывающий кристаллы электролюминофоров. При возбуждении электрическим полем электроны переходят из Cu2S к положительному концу кристалла и при соударении с центрами люминесценции ионизуют их. При этом часть электронов может отгоняться полем из области ионизации и захватываться на ловушках.

Выключение поля или перемена знака приводит к возврату электронов и рекомбинации их с центрами люминесценции, в результате чего происходит излучение. В работах 21, 22 механизм электролюминесценции связывается с процессом туннельного проникновения электронов при ионизации полем, которое осуществляется из фазы Cu2S, находящейся на поверхности кристаллов.

Торнтон 23 высказал предположение, что электролюминесценция в сульфидных электролюминофорах обусловлена инжекцией неосновных носителей, а не ускорением и соударениями с центрами люминесценции основных носителей. Дальнейшие исследования, связанные с наблюдением свечения кристаллов электролюминофоров под микроскопом, по-видимому, подтверждают точку зрения Торнтона. Как следует из ряда работ, в которых исследовалось свечение отдельных кристаллов под микроскопом 24, 25 , свечение сосредоточено в отдельных пятнах, точках или светящихся линиях.

Джилсон и Дарнелл 24 предполагают, что светящиеся линии, которые видны под микроскопом, связаны с особыми линейными дефектами в кристаллах ZnS. Так как свечение по длине линии неравномерно, ярче всего светится голова линии, то можно предположить, что начало линии находится в плоскости р-n-перехода. Механизм электролюминесценции, согласно представлениям авторов, определяется двумя стадиями.

На первой стадии, или стадии активации, положительное напряжение приложено к n-области, а отрицательное - к р-области. Это приводит к тому, что электроны и дырки начинают двигаться из области р-n-перехода. Вторая стадия начинается тогда, когда знак напряжения изменяется и дырки инжектируются в n-область. Здесь они захватываются на линейных дефектах и переносятся к центрам люминесценции. При рекомбинации электронов с дырками происходит излучение.

В работе Фишера 26 также рассматривается возможное объяснение явлений электролюминесценции инжекцией носителей. Используя представления Лемана и Маэда, Фишер предполагает, что проводящие включения в кристалле ZnS имеют линейчатую иглообразную форму и основные явления разыгрываются около этих включений. При этом он вводит представление о биполярной. инжекции носителей тока. Сущность этих представлений заключается в следующем. При приложении поля определенной полярности из одного конца проводящего включения выходят в объем кристалла ZnS дырки, а из противоположного - электроны.

Дырки захватываются центрами люминесценции, а электроны - ловушками. При изменении полярности знаки носителей, выходящих из концов проводящих включений, меняются. Конец, из которого выходили дырки, при изменении знака поля будет поставлять электроны, которые могут рекомбинировать с дырками, находящимися на центрах люминесценции. На основе этой модели объясняются основные явления электролюминесценции зависимость яркости свечения от напряжения, величина светоотдачи, стабильность и изменение цвета свечения электролюминофора при повышении частоты возбуждающего поля. 1.4

– Конец работы –

Эта тема принадлежит разделу:

Некоторые особенности спектрально-кинетических характеристик люминофоров на основе ZnS:Cu

Исследования последних лет показали, что прогресс любых технических характеристик электролюминесцентных приборов и устройств невозможен без решения… Для решения этой проблемы проводятся обширные исследования по изучению… Представителями данного класса люминофоров являются сульфоселенид цинка Zn S,Se Cu и сульфоселенид цинка кадмия Zn,Cd…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Механизмы свечения цинк-сульфидных электролюминофоров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие положения люминесценции кристаллофосфоров
Общие положения люминесценции кристаллофосфоров. Согласно представлениям квантовой теории процесс люминесценции связан с тем, что при возбуждении люминофоров происходит возбуждение электронов атома

Механизмы возбуждения электролюминесценции
Механизмы возбуждения электролюминесценции. Электролюминесценция отличается от других видов люминесценции прежде всего способом подведения энергии к веществу. Поэтому при ее изучении основно

Зависимость интегральной и мгновенной яркости электролюминесценции от напряжения
Зависимость интегральной и мгновенной яркости электролюминесценции от напряжения. Исследование электролюминесценции цинксульфидных электролюминофоров под действием переменного поля 20 показало, что

Зависимость интегральной яркости электролюминесценции от частоты
Зависимость интегральной яркости электролюминесценции от частоты. Величина квантового выхода рекомбинации Р зависит от времени, в течение которого происходит термическое освобождение и перераспреде

Объекты исследования
Объекты исследования. Цинк-сульфидные люминофоры обладают высокой яркостью и широко употребляются сейчас на практике. Хотя свечение люминофоров, активированных медью, серебром, марганцем или

Описание экспериментальной установки
Описание экспериментальной установки. Для исследования спектров и кинетики электролюминесценции использовался светосильный спектрометр СДЛ-1, предназначенный для регистрации спектров люминесценции

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ. Итак, на основании произведенных экспериментальных исследований можно сформулировать следующие выводы 1. Спектр люминесценции электролюминофора ZnS Cu,Mn, изготовленно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги