рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера БКШ и Боголюбова

Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера БКШ и Боголюбова - раздел Физика, Сверхпроводники Микроскопическая Теория Сверхпроводимости Бардина - Купера - Шриффера Бкш И Б...

Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера БКШ и Боголюбова. Радость видеть и понимать есть самый прекрасный дар природы А. Эйнштейн. 4.1 Теория БКШ. Многие ученые разных стран внесли вклад в создании теории сверхпроводимости. Первым из них был советский ученый Л.Д. Ландау. Он первым сопоставил два странных явления - сверхпроводимость и сверхтекучесть электронной жидкости.

В 1950г. В.Л. Гинзбург и Л.Д. Ландау предложили феноменологическую теорию сверхпроводимости, позволившую рассмотреть ряд существенных свойств сверхпроводников, описать их поведение во внешнем поле. Теория эта была обоснована Л.П. Горьковым, разработавшим метод исследования сверхпроводящего состояния. Следующий шаг был сделан почти одновременно советским физиком академиком Н.Н. Боголюбовым и американским физиком Бардиным, Купером и Шриффером.

Американские ученые успели несколько раньше поставить последнюю точку. Сверхпроводимость, как оказалось, проявляется в тех случаях, когда электроны в металле группируются в пары, взаимодействующие через кристаллическую решетку. Она тесно связана между собой, так что разорвать пару и разобщить электроны через трудные мощные связи позволяют электронам двигаться без всякого сопротивления сквозь решетку кристалла. Исходя из этих представлений Бардин, Купер и Шриффер в 1957г.построили долгожданную микроскопическую теория сверхпроводимости, за которую они в 1972г.были удостоены нобелевской премии. Эта теория, известная сегодня под названием теория БКШ , не только позволила с уверенностью сказать, что механизм сверхпроводимости действительно ясен, но и впервые привела к установлению связи между критической температурой Тк и параметрами металлов. 4.2 Энергетическая щель. Связываясь, пара электронов как бы попадает в энергетическую яму. Для этого ей надо отдать некоторую энергию кристаллической решетки.

Отданная энергия называется энергией связи пары Ес. Следовательно, для перевода электронов из сверхпроводящего состояния в нормальное необходимо затратить энергию на разрыв пары не меньше энергии связи, то есть энергию Ес 2 на каждый электрон.

Энергетический спектр электронов в сверхпроводнике можно представить следующим образом все электронные уровни сдвигаются вниз по сравнению с уровнем Ферми на величину равную рис.17 . Если теперь в такой сверхпроводник попадет направленный электрон, он должен занять уровень 2 выше последнего из занятых спаренными электронами.

Туда же должны переходить электроны из разорванных пар. А вот энергетический промежуток от ЕF - до ЕF будет оставаться незанятым, говорят, что в энергетическом электронном спектре сверхпроводника имеется энергетическая щель величиной 2. Иными словами, нормальное состояние электронов в сверхпроводнике отделено от сверхпроводящего состояния энергетической щелью. Значение щели можно приближенно, зная критическую температуру Тr 2 3,5kТr. При критической температуре, равной примерно 20К, величина энергии 2 2,8 10-22 Дж 1,7 10-3 эВ. В большинстве случаев критическая температура Тк меньше 20К и величина энергетической щели соответствует 10к эВ. Надо сказать, что энергетическая щель в сверхпроводнике вовсе не постоянная величина.

Она зависит от температуры в магнитном поле. Уменьшение температуры приводит к уменьшению энергетической щели и при критической температуре она обращается в ноль. Это и понятно.

С увеличением температуры в сверхпроводнике появляется все больше фононов фонон - самые настоящие частицы, но не совсем равноправные в том смысле, что они способны существовать только внутри вещества, в пустоте фононов не может быть. Фонон квази частица. С энергией, равной величине энергии щели, или больше неё, и они разрушают все большее число пар, превращая их в нормальные электроны. Но чем меньше остается пар, тем меньше становиться их вклад притяжение, тем оно слабее, а значит, тем более узкой становиться энергетическая щель. Зависимость величины энергетической щели от температуры показана на рисунке 18. Сплошная кривая теоретическая точками указаны значения, полученные опытным путем.

Можно отметить исключительно хорошее согласие теории и эксперимента, которое подтверждает правильность основных положений современной теории. 4.3 Бесщелевая сверхпроводимость. В первые годы после создания теории БКШ наличие энергетической щели в электронном спектре считалось характерным признаком сверхпроводимости без энергетической щели - бесщелевая сверхпроводимость.

Как было впервые показано А.А. Абрикосовым и Л.П. Горьковым при введении магнитных примесей критическая температура эффектно уменьшается. Атомы магнитной примеси обладают спином, а значит спиновым магнитным моментом. При этом спины пары оказываются как бы в параллельном и антипараллельном магнитном поле примеси. С увеличением концентрации атомов, магнитной примеси в сверхпроводнике все большее число пар будет разрушаться, и в соответствии с этим ширина энергетической щели будет уменьшаться.

При некоторой концентрации n, равной 0,91nкр nкр - значение концентрации, при которой полностью исчезает сверхпроводящее состояние, энергетическая щель становиться равной нулю. Можно предположить, что появление бесщелевой сверхпроводимости связано с тем, что при взаимодействии с атомами примеси часть пар оказывается временно разорванными. Такому временному распаду пары соответствует появление локальных энергетических уровней в пределах самой энергетической щели. С ростом концентрации примесей щель все больше заполняется этими локальными уровнями до тех пор, пока не исчезнет совсем.

Существование электронов образовавшихся при разрыве пары, приводит к исчезновению энергетической щели, а оставшиеся куперовские пары обеспечивают равенство нулю электронного сопротивления. Мы приходим к выводу, что существование щели само по себе вовсе не является обязательным условием проявление сверхпроводящего состояния.

Тем более что бесщелевая сверхпроводимость, как оказалось явление не столь уж и редкое. Главное - это наличие связанного электронного состояния - куперовской пары. Именно это состояние может проявлять сверхпроводящие свойства и в отсутствии энергетической щели. Парные корреляции - писал один из создателей теории БКШ Шриффер на которых основана теория спаривания электронов, наиболее существенных для объяснения основных явлений наблюдаемых в сверхпроводящем состоянии. 5.

– Конец работы –

Эта тема принадлежит разделу:

Сверхпроводники

Свободная энергия сверхпроводника 7. Электродинамика сверхпроводников 7.1 Уравнения Лондонов 7.2 Эффект Мейснера 7.3 Глубина проникновения… Человеческое воображение зачастую отказывается служить в этом странном мире… Но, как сказал Л. Д. Ландау, величайшим триумфом человеческого гения является то, что человек способен понять вещи,…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера БКШ и Боголюбова

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Чудеса вблизи абсолютного нуля
Чудеса вблизи абсолютного нуля. Немало поводов для размышлений принесло физикам XX столетие. Среди них результаты опытов в условиях сверхглубокого холода при температурах всего лишь на несколько гр

Конечные температуры критические
Конечные температуры критические. Совершенный конденсат, охватывающий все электроны, способные объединяться в пары, может существовать только при абсолютном нуле. С повышением температуры тепловое

Нулевое сопротивление
Нулевое сопротивление. Когда же исчезает сопротивление? Ответ на этот вопрос получил Камерлинг-Оннес ещё в 1914г. Он предложил весьма остроумный метод измерения сопротивления. Схема эксперимента вы

Сверхпроводники в магнитном поле
Сверхпроводники в магнитном поле. То, что в магнитном поле превышающем некоторое пороговое или критическое значение, сверхпроводимость исчезает, совершенно бесспорно. Даже, если бы какой-то

Промежуточное состояние при разрушении сверхпроводимости током
Промежуточное состояние при разрушении сверхпроводимости током. По достижении критического значения магнитного поля сверхпроводимость скачком разрушается и образец целиком переходит в нормал

Сверхпроводники I и II рода
Сверхпроводники I и II рода. В сверхпроводниках первого рода поверхностная энергия положительна, то есть в нормальном состоянии выше, чем в сверхпроводящем. Если в толще такого материала воз

Туннельные эффекты
Туннельные эффекты. Туннельный эффект известен в физики давно. Это один из основных квантово- механических эффектов и разобраться в нем можно только подходя с помощи квантового описания прои

Эффект Джозефсона
Эффект Джозефсона. Если туннельный контакт двух сверхпроводников включить во внешнюю цепь с источником тока и устанавливается такой, чтобы удовлетворить соотношению I I0sin, где - разность ф

Термодинамика перехода в сверхпроводящее состояние
Термодинамика перехода в сверхпроводящее состояние. Пусть длинный цилиндр из сверхпроводящего проводника I рода помещен в однородное продольное поле Н0. Найдем значение этого поля Нс, при ко

Примеры фазовых переходов
Примеры фазовых переходов. В основе теории Гинзбурга - Ландау лежит теория фазовых переходов Ландау, разработанная им для общей ситуации, когда система претерпевает фазовый переход, при кото

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги