рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Результирующее поле n одинаковых осцилляторов

Результирующее поле n одинаковых осцилляторов - раздел Физика, ОПТИКА. ПРИНЦИП НАИМЕНЬШЕГО ВРЕМЕНИ Настоящая Глава — Непосредственное Про­должение Предыдущей, Хотя Название ...

Настоящая глава — непосредственное про­должение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворитель­ным образом определить разницу между дифрак­цией и интерференцией. Дело здесь только в привычке, а существенного физического раз­личия между этими явлениями нет. Единствен­ное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обыч­но называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — ин­терференция это или дифракция, а просто про­должим наше обсуждение с того места, где мы остановились в предыдущей главе.


Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных рас­стояниях один от другого и обладающих рав­ными амплитудами, но разными фазами созда­ваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возни­кает разность хода лучей. Независимо от при­чины возникновения разности фаз необходимо вычислить сумму такого вида:

 

где j — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае j=a+2pd1/2sinq. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А, а его фаза равна нулю; длина второго также А, а фаза его равна j. Следующее слагаемое имеет снова длину А и фазу, равную 2j, и т. д. В конце концов получается часть правильного много­угольника с n сторонами (фиг. 30.1).

 


 

Фиг. 30.1. Результирующая ам­плитуда шести аквидистантных источников при разности фаз j между каждыми двумя соседними источниками.

 


Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе j (поскольку радиус QS образует с А2 такой же угол, как QO с a1). Следовательно, радиус r дол­жен удовлетворять равенству А = 2rsinj/2, откуда мы и на­ходим величину r. Далее, большой угол OQT равен nj; следо­вательно, AR=2rsinnj/2. Исключая из обоих равенств г, получаем

 

(30.2)


Таким образом, суммарная интенсивность оказывается равной

 

 

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n =1, получим, как и следовало ожидать, I = I0. Проверим формулу для n=2: с помощью соотношения sinj=2sin j/2cosj/2 сразу находим АR = 2Acosj/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и j, близ­ких к нулю. Прежде всего, когда j точно равно нулю, мы полу­чаем отношение О/О, но фактически для бесконечно малых j отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2 раз больше интенсивности одного осциллятора. Этот результат легко по­нять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исход­ного, а интенсивность увеличивается в n2 раз.

С ростом фазы j отношение двух синусов падает и обращается в нуль в первый раз при nj/2 = p, поскольку sinp=0. Дру­гими словами, значение j=2p/n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов воз­вращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2л.

Перейдем к следующему максимуму и покажем, что он дей­ствительно, как мы и ждали, много меньше первого. Для точ­ного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с измене­нием j. Мы не станем этого делать, поскольку при большом n sinj/2 меняется медленнее sinj/2 и условие sinj/2 =1 дает положение максимума с большой точностью. Макси­мум sin2nj/2 достигается при nj/2=Зp/2 или j= Зp/n. Это озна­чает, что стрелки векторов описывают полторы окружности.

Подставляя j=3p/n, получаем sin23p/2=l в числителе (30.3) (с этой целью и был выбран угол j) и sin23n/2n в знамена­теле. Для достаточно большого n можно заменить синус его аргументом: sin Зp/2n =3p/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I0 (4n2/9p2). Но n2I0 — не что иное, как интенсивность в первом максимуме, т. е. интенсив­ность второго максимума получается равной 4/9p2 от максималь­ной, что составляет 0,047, или меньше 5%! Остальные макси­мумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.



Фиг. 30.2. Зависимость интенсивности от фазово­го угла для большого числа осцилляторов с одинаковыми амплитудами.

Фиг. 30.3. Устройство из n одинаковых осцил­ляторов, расположенных на линии. Фаза колебания s-го осциллятора равна as=sa.

 

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2pnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной ли­нии, как показано на фиг. 30.3. Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источ­никами выбран равным а. Тогда для лучей, распространяющихся в заданном направлении Э, отсчитываемом от нормали, вследст­вие разности хода лучей от двух соседних источников возникает


дополнительный сдвиг фазы 2pd(1/l)sinq. Таким образом,

 

(30.4)

Рассмотрим сначала случай a=0. Все осцилляторы колеб­лются с одной фазой; требуется найти интенсивность их излуче­ния как функцию угла В. Подставим с этой целью j=kdsinq в формулу (30.3) и посмотрим, что получится в результате. Пре­жде всего, при j=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направ­лении 0 =0. Интересно узнать, где находится первый минимум.


Он возникает при j=2p/n; другими словами, первый мини­мум кривой интенсивности определяется из соотношения (2pd/l)sinq=2p/n. Сокращая на 2p, получаем

 

(30.5)

Теперь разберем с физической точки зрения, почему мини­мум возникает именно в этом месте. В этом выражении nd есть полная длина L нашей системы осцилляторов. Обращаясь к фиг. 30.3, мы видим, что ndsinq=Lsinq=D. Формула (30.5) подсказывает нам, что минимум возникает при D, равном одной длине волны. Но почему минимум получается при D = l? Дело в том, что поля от отдельных осцилляторов равномерно распределены по фазе от 0 до 360°. Стрелки (см. фиг. 30.1) опи­сывают полную окружность; мы складываем равные векторы, имеющие произвольные направления, а в этом случае сумма равна нулю. Вот при таких значениях угла, когда D=l, воз­никает минимум. Это и есть первый минимум.

Формула (30.3) имеет еще одну важную особенность: при уве­личении угла j на число, кратное 2p, значение интенсивности не меняется. Поэтому для j =2p, 4p, 6p и т. д. также возникают резкие и высокие максимумы. Вблизи этих максимумов интен­сивность повторяет свой ход (см. фиг. 30.2). Зададимся вопро­сом, в силу каких геометрических соотношений возникают дру­гие максимумы? Условие появления максимума записывается в виде j==2pm, где mлюбое целое число. Отсюда получаем (2pd/l)sinq=2pm. Сокращая на 2p, получаем

dsinq = ml. (30.6)

Это соотношение очень похоже на формулу (30.5). Однако там было ndsinq=l. Разница в том, что здесь нужно взять каж­дый отдельный источник и выяснить, что для него означает условие ndsinq=ml; угол q здесь таков, что разность хода d l. Другими словами, волны, идущие от источников, раз­личаются по фазе на величину, кратную 360°, и, следовательно, все находятся в фазе. Поэтому при сложении волн возникает столь же высокий максимум, как и в рассмотренном ранее слу­чае т =0. Побочные максимумы и весь ход интенсивности здесь такие же, как в случае j =0. Таким образом, наша система посы­лает пучки лучей в разных направлениях, причем каждый пу­чок имеет высокий центральный максимум и ряд слабых боко­вых. Главные (центральные) максимумы в зависимости от вели­чины т называются максимумами нулевого, первого и т. д. порядков; т называют порядком максимума.

Обратите внимание на такой факт: если d меньше l, то фор­мула (30.6) имеет единственное решение при т =0. Поэтому для малого расстояния между источниками возникает один-един­ственный пучок, сконцентрированный около q=0. (Разумеется, есть еще пучок в обратном направлении.) Чтобы получить мак­симумы других порядков, расстояние d должно быть больше одной длины волны.

– Конец работы –

Эта тема принадлежит разделу:

ОПТИКА. ПРИНЦИП НАИМЕНЬШЕГО ВРЕМЕНИ

Свет, Отражение и преломление. Принцип наименьшего времени Ферма. Применения принципа Ферма. Более точная формулировка принципа Ферма. Квантовый механизм...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Результирующее поле n одинаковых осцилляторов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Отражение и преломление
Все сказанное дает представление об основной идее геомет­рической оптики. Теперь перейдем к ее количественному описа­нию. До сих пор мы разбирали случай, когда свет распростра­няется между д

Принцип наименьшего времени Ферма
По мере развития науки нам хочется получить нечто боль­шее, чем просто формулу. Сначала мы наблюдаем явления, затем с помощью измерений получаем числа и, наконец, на­ходим закон, связывающий эти чи

Применения принципа Ферма
Рассмотрим теперь некоторые интересные следствия прин­ципа наименьшего времени. Первое из них — принцип обрати­мости. Мы уже нашли путь из A в В, требующий наименьшего времени; пойдем теперь

Более точная формулировка принципа Ферма
До сих пор мы фактически пользовались неправильной фор­мулировкой принципа наименьшего времени. Здесь мы сформу­лируем его более точно. Мы неправильно называли его принци­пом наименьшего вре

Квантовый механизм
В заключение дадим очень грубую картину того, что проис­ходит на самом деле, как протекает весь процесс распростра­нения света с квантовомеханической точки зрения, которую сейчас считают самой прав

Фокусное расстояние для сферической поверхности
Рассмотрим сначала простейший пример преломляющей поверхности, разделяющей две среды с разными показателями преломления (фиг. 27.2). Случай произвольных показателей  

Радиус кривизны поверхности положителен, если центр находится справа от поверхности.
Например, на фиг. 27.2 s, s' и R положительны; на фиг. 27.3 s и R положительны, a s' отрицательна. Для вогнутой поверх­ности наша формула (27.3) остается справедливой, если считать R отрицательной

Фокусное расстояние линзы
Рассмотрим теперь другой случай, имеющий большое прак­тическое значение. Большинство линз, которыми мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стекл

Увеличение
До сих пор мы рассматривали процесс фокусировки только для точек, лежащих на оси. Построим теперь изображение объектов, несколько смещенных в сторону от оси; это поможет нам понять явление увеличен

Каждый луч, параллельный оси, фокусируется по другую сторону линзы в точке, называемой фокусом и располо­женной на расстоянии f от линзы;
2) каждый луч, приходящий из фокуса по одну сторону лин­зы, выходит с другой стороны параллельно оси.  

Сложные линзы
Опишем кратко без вывода основные свойства системы линз. Как исследуют систему нескольких линз? Очень просто. Начнем с некоторого объекта и определим его изображение, даваемое первой линзой, пользу

Аберрация
Пока вы еще не успели прийти в восхищение от такой вели­колепной штуки, как линза, я должен успеть сказать об ее серьезных недостатках, которые мы не могли заметить раньше, поскольку ограничились р

Разрешающая способность
Еще один интересный вопрос, очень важный с технической точки зрения! какова разрешающая способность оптических приборов? Когда мы создаем микроскоп, мы хотим целиком ви­деть тот объект, который нах

Электромагнетизм
Решающие и наиболее поразительные периоды развития физики — это периоды великих обобщений, когда явления, казавшиеся разоб­щенными, неожиданно становятся всего лишь разными аспектами одного и того

Излучение
Перейдем от общей картины мира к явлениям излучения. Прежде всего мы должны выбрать тот член в выражении (28.3), который спадает обратно пропорционально первой (а не второй!) степени расстояния. Ок

Дипольный излучатель
Примем формулу (28.6) в качестве основного закона электро­магнитного излучения, т. е. будем считать, что электрическое поле, создаваемое нерелятивистски движущимся зарядом на дос­таточно больших ра

Интерференция
Возьмем теперь два источника, расположенных рядом, на расстоянии в несколько сантиметров один от другого (фиг. 28.3). Если оба источника присоединены к одному генератору и заряды в них движутся вве

Электромагнитные волны
В этой главе мы будем обсуждать те же вопросы, что и в предыдущей, но с большими математическими подробностями. Качественно мы уже показали, что поле излучения двух ис­точников имеет максимумы и ми

Энергия излучения
Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что энергия, несомая волно

Два дипольных излучателя
Рассмотрим теперь результирующее поле, которое возникает при одновременном действии двух осцилляторов. В предыдущей главе уже разбиралось несколько наиболее простых случаев. Мы дадим сначала качест

Математическое описание интерференции
Мы рассматривали излучение диполей с качественной точки зрения, теперь рассмотрим количественную картину. Найдем прежде всего суммарное поле от двух источников в самом общем случае, когда разнос

Дифракционная решетка
На практике равенство фаз осцилляторов или антенн дости­гается с помощью проводов и всяких специальных устройств. Возникает вопрос, можно ли и как создать подобную систему для света. Сейчас мы еще

Разрешающая способность дифракционной решетки
Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывает­ся в целый спектр линий, по

Параболическая антенна
Рассмотрим теперь еще один вопрос, связанный с разреша­ющей способностью. Речь идет об антеннах радиотелескопов, использующихся для определения положения источников ра­диоволн на небе и их угловых

Окрашенные пленки; кристаллы
Выше были рассмотрены некоторые эффекты, возникающие при интерференции нескольких волн. Но можно привести ряд других примеров, основной механизм которых слишком сложен, чтобы говорить о нем в данны

Дифракция на непрозрачном экране
Рассмотрим сейчас весьма интересное явление. Пусть имеет­ся непрозрачный лист с отверстиями, и по одну сторону от него расположен источник света. Нас интересует, какое изображение возникнет на экра

Поле системы осцилляторов, расположенных на плоскости
Предположим, что имеется некоторая плоскость, которую за­полняют осцилляторы, причем все они колеблются в плоскости одновременно, с одной амплитудой и фазой. Чему равно поле на конечном, но достато

Показатель преломления
Мы уже говорили, что свет в воде движется медленнее, чем в воздухе, а в воздухе чуть мед­леннее, чем в вакууме. Этот факт учитывается введением показателя преломления п. Попро­буем теперь понять, к

Поле, излучаемое средой
Мы должны теперь выяснить, имеет ли поле осциллирующих зарядов в пластинке тот же вид, что и поле Еа во втором члене (31.8). Если это так, то тем самым мы найдем и показатель пре­ломлени

Дисперсия
Полученный нами результат очень интересен. Он дает не только показатель преломления, выраженный через атомные постоянные, но указывает, как меняется показатель преломления с частотой света w. С пом

Поглощение
Вы уже, наверное, заметили нечто странное в последней фор­м

Энергия световой волны
Как мы видели, мнимая часть показателя преломления ха­рактеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия св

Дифракция света на непрозрачном экране
Теперь наступил удобный момент, чтобы применить методы настоящей главы к решению задачи другого рода. В гл. 30 мы говорили, что распределение интенсивности света — дифрак­ционную картину, возникающ

Радиационное сопротивление
В предыдущей главе мы показали, что сис­тема осциллирующих зарядов излучает энер­гию, и нашли формулу для энергии излучения. Количество энергии, проходящее в 1 сек через квадратный метр поверхности

Интенсивность излучения
Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного уско­рения, считая, однако, движение нерелятивистским. Когда уско­рение направлено, скаже

Радиационное затухание
Заряд, закрепленный на пружине с собственной частотой w0 (или электрон в атоме), даже в абсолютно пустом простран­стве не сможет колебаться бесконечно долго, поскольку, колеб­лясь, он те

Независимые источники
Прежде чем перейти ко второй теме этой главы — рассея­нию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференци

Рассеяние света
Приведенные выше примеры помогут нам понять одно явле­ние, которое возникает в воздухе в результате неупорядочен­ного расположения атомов. В главе о показателе преломления мы говорили, что падающий

Вектор электрического поля световой волны
В этой главе мы рассмотрим круг явлений, связанных с векторным характером электриче­ского поля световой волны. В предыдущих главах направление колебаний электрическо­го поля нас не интересовало, пр

Поляризация рассеянного света
Первый пример поляризационных явлений, который мы уже ранее обсуждали, есть рассеяние света. Рассмотрим прохо­дящий в воздухе пучок света, например солнечного света. Электрическое поле возбуждает к

Двойное лучепреломление
Есть еще один интересный факт из области поляризационных явлений. Встречаются среды, показатель преломления которых различен для света, линейно поляризованного в том или другом направлении. Допу

Поляризаторы
До сих пор мы говорили о средах, показатель преломления которых различен для разных направлений поляризации падаю­щего светового пучка. Большое значение для практических применений имеют и другие с

Оптическая активность
Интереснейший поляризационный эффект был обнаружен в материалах, молекулы которых не обладают зеркальной сим­метрией; это молекулы в виде штопора, перчатки с одной руки или вообще какой-то формы, к

Интенсивность отраженного света
Рассмотрим здесь количественную зависимость коэффициен­та о

Аномальное преломление
Последним рассмотрим поляризационное явление, которое исторически было обнаружено самым первым,— аномальное преломление света. Моряки, побывавшие в Исландии, приво­зили в Европу кристаллы исландско

Движущиеся гюточиики
В этой главе мы расскажем еще о ряде эф­фектов, связанных с излучением, и на этом за­кончим изложение классической теории света. Проведенный нами в предыдущих главах анализ световых явлений был дос

Определение «кажущегося» движения
Написанное выше уравнение можно упростить довольно инте­рес

Синхpoтpoннoe излyчeнue
В синхротроне электроны движутся по окружности с боль­шими скоростями, близкими к скорости света, и описанное излучение можно увидеть как настоящий свет! Обсудим это явление более подробно.

Космическое еинхротронное излучение
К 1054 г. нашей эры китайская и японская цивилизации были одними из самых передовых в мире: китайцы и японцы уже тогда следили за явлениями во Вселенной, и в этот самый год они зафиксировали замеча

Тормозное излучение
Мы кратко расскажем еще об одном интересном эффекте, связанном с излучением быстродвижущейся частицы. По сущест­ву, этот процесс очень похож на только что описанное излуче­ние. Предположим, что име

Эффект Допплера
Рассмотрим теперь ряд других эффектов, связанных с движение

Четырехвектор (w, k)
Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота w' линейно связана со старой частотой w и старым волновым числом k, а новое волновое число представ­ляется в виде к

Аберрация
При выводе формул (34.17) и (34.18) мы взяли простой при­ме

Импульс световой волны
Займемся теперь другим вопросом. В прошлых главах мы ни разу не говорили о магнитном поле световой волны. Обычно эффекты, связанные с магнитным полем, очень малы, однако есть один интересный

Человеческий глаз
Явление цвета отчасти обусловлено физи­ческими процессами. Мы уже говорили о цве­товой гамме мыльных пленок, вызванной интер­ференцией. Но цвет, кроме того, связан еще с функцией глаза и с тем, что

Цвет зависит от интенсивности
Одним из самых примечательных свойств зрения является способность глаза привыкать (адаптироваться) к темноте. Когда из ярко освещенной комнаты мы входим в темную, то некоторое время мы ничего не ви

Измерение восприятия цвета
Теперь мы займемся зрением, осуществляемым с помощью колбочек, т. е. зрением при ярком освещении. Самое главное и самое характерное свойство такого зрения — это цвет. Мы уже знаем, что белый свет с

Диаграмма цветности
Рассмотрим теперь смешивание цветов с математической точки зрения как некое геометрическое построение. Цвет, опи­сываемый уравнением (35.4), можно представить вектором в трехмерном пространстве, гд

Механизм цветового зрения
Первый вопрос, который возникает по поводу изложенных закономерностей: почему цвета ведут себя таким образом? Простейшая теория, предложенная Юнгом и Гельмгольцем, предполагала, что

Физико-химические свойства цветового зрения
Что можно сказать о сравнении полученных кривых со свойствами настоящего глазного пигмента? Пигменты, извлекае­мые из сетчатки, главным образом состоят из одного вида, на­зываемого зрительным пу

Ощущение цвета
Обсуждая механизм зрения, прежде всего необходимо понять, что мы обычно видим не беспорядочный набор цветных или световых пятен (разумеется, если не находимся на выс­тавке некоторых современных худ

Физиология зрения
Мы начали говорить не только о цветовом зрении, но о зрении вообще только для того, чтобы напомнить о внутрен­них связях в сетчатке, показанных на фиг. 35.2. Сетчатка по­истине напоминает поверхнос

Палочки
Посмотрим теперь подробнее, что происходит в палочках сетчатки. На фиг. 36.5 показана микрофотография середины палочки (конец ее выходит вверх за пределы снимка). Справа в увеличенном виде слой за

Сложные глаза насекомых
Вернемся теперь к биологии. Человеческий глаз — отнюдь не единственный тип глаза. Хотя глаза почти всех позвоночных похожи на человеческие, однако у низших животных мы встре­чаем множество других т

Другие типы глаз
Кроме пчел, многие другие животные могут различать цве­та. Рыбы, бабочки, птицы и пресмыкающиеся тоже могут различать цвета. А вот большинство млекопитающих, как полагают, не могут. Приматы, однако

Нервные механизмы зрения
Одной из основных тем этой главы является взаимосвязь и взаимоинформация отдельных частей глаза. Давайте рассмотрим сложный глаз краба-мечехвоста, над которым было проделано довольно много опытов.

Атомная механика
В последних нескольких главах мы с вами рассмотрели многие существенные понятия, без которых невозможно разобраться ни в яв­лении света, ни вообще в электромагнит­ном излучении. (Некоторые специаль

Опыт с пулеметной стрельбой
Пытаясь понять квантовое поведение электронов, мы сопо­ставим его с привычными нам движениями обычных частиц, похожих на пулю, и обычных волн, похожих на волны на воде. Сперва мы займемся стрельбой

Опыт с электронами
Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой то­ком и помещен

Интерференция электронных волн
Попытаемся проанализировать кривую на фиг. 37.3 и посмотрим, сможем ли мы понять поведение электронов. Первое, что хочется отметить, это что раз они приходят порциями, то каждая из порций (ее тоже

Как проследить за электроном?
Попытаемся проделать такой опыт. В наш электронный при­бор как раз за стенкой между двумя отверстиями поместим сильный источник света (фиг. 37.4). Известно, что электричес­кие заряды рассеивают све

Начальные принципы квантовой мвханики
Теперь подытожим основные выводы из наших опытов. Сделаем мы это в такой форме, чтобы они оказались справедли­выми для всего класса подобных опытов. Сводку итогов можно записать проще, если сперва

Принцип неопределенности
Вот как сам Гейзенберг сформулировал свой принцип не­определенности: если вы изучаете какое-то тело и вы в состоянии определить z-компоненту импульса тела с неопределенностью Dр, то вы не можете од

Измерение положения и импульса
Чтобы понять, почему в квантовой механике появляется неопределенность в положении и (или) в импульсе, рассмотрим два примера. Мы уже видели раньше, что если бы этого не было, если бы можно было пар

Дифракция на кристалле
Теперь рассмотрим отражение волн вещества от кристалла. Кристалл — это твердое тело, состоящее из множества одина­ковых атомов, расположенных стройными рядами. Как можно расположить этот строй атом

Фиг. 38.7. Диффузия нейтронов из котла сквозь графитовый блок
Проходит, не отражаясь, не рассеи­ваясь, не теряясь. В частности, свет (у него l много больше этих промежутков) проходит, не давая никакой картины отра­жений от кристаллических плоскостей.

Размер атома
Рассмотрим еще одно применение принципа неопределен­ности (38.3), но только, пожалуйста, не воспринимайте этот расчет чересчур буквально; общая мысль правильна, но ана­лиз проделан не очень аккурат

Уровни энергии
Мы говорили уже об атоме в наинизшем возможном энерге­тическом состоянии. Но оказывается, что электрон способен и на многое другое. Он может вращаться и колебаться гораздо энергичней, возможности е

Немного философии
Поговорим еще немного о философии квантовой механики. Как и всегда, здесь есть две стороны: философское содержание физики и его экстраполяция на другие области знаний. Когда философские идеи, связа

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги