рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электромеханическое сопряжение в мышцах

Электромеханическое сопряжение в мышцах - Лекция, раздел Физика, РАЗДЕЛ I. БИОФИЗИКА МЕМБРАН Электромеханическое Сопряжение - Это Цикл Последовательных Процессов, Начинаю...

Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по схеме рис. 7.11.

 

 

 

 

Рис. 7.11.Схема электромеханического сопряжения в кардиомиоците (М - клеточная мембрана-сарколемма, СР - саркоплазматический ретикулум, МФ - миофибрилла, Z - z-диски, Т - Т-система поперечных трубочек); 1 - поступления Na+ и 2 - поступления Са2+ в клетку при возбуждении мембраны, 3 - "кальциевый залп", 4 - активный транспорт Са2+ в СР, 5 - выход из клетки К+, вызывающий реполяризацию мембраны, 6 - активный транспорт Са2+ из клетки

Процесс сокращения кардиомиоцита происходит следующим образом

1 - при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы ионы Na+ входят в клетку, вызывая деполяризацию мембраны

2 - в результате деполяризация плазматической мембраны в ней и в Т-трубочках открываются потенциал-зависимые; медленные кальциевые каналы (время жизни 200 мс), и ионы Са2+ поступают из внеклеточной среды, где их концентрация ≈ 2 • 10-3 моль / л, внутрь клетки (внутриклеточная концентрация Са2+ ≈ 10-7 моль / л);

3 - кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са2+ (в СР их концентрация достигает ≈ 10-3 моль / л), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый "кальциевый залп". Ионы Са2+ из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;

4 - по окончании процесса сокращения миофибрилл ионы Са2+ с помощью кальциевых насосов, находящихся в мембране СР, активно заканчиваются внутрь саркоплазматического ретикулума;

5 - процесс электромеханического сопряжения заканчивается тем, что К+ пассивно выходит из клетки, вызывая реполяризацию мембраны;

6 - ионы Са2+ активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный выше двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки jCa прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения. Поток ионов Са2+ внутрь клетки выполняет таким образом две функции: формирует длительное (200 мс) плато потенциала действия кардиомиоцита и участвует в процессе электромеханического сопряжения.

Следует отметить, что не во всех мышечных клетках орга­низма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к z-дискам. Изменения мембранного потенциала во время деполяризации через Т-систему передается в таких клетках непосредственно на мембрану СР, вызывая залповое высвобождение ионов Са2+ и дальнейшую активацию сокращения (3, 4, 5).

Общим для любых мышечных клеток является процесс освобождения ионов Са2+ из внутриклеточных депо - саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присутствии ионов Са2+ белка экворина, который был выделен из светящихся медуз.

Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной — несколько больше (до 100 мс).

Яд кураре, которым пользуются охотники Амазонки, парализует жертву как раз благодаря тому, что молукулы этого яда, попав в кровь проникают к рецепторам ацетилхолина и усаживаются на них, так что когда к этим рецепторам приходит сам ацетилхолин, свободных мест уже нет, и процесс передачи сигнала на мышечные сокращения преравается. Аналогично работает белок ботулин, вызывающий одно из опаснейших пищевых отравлений, ботулизм. А вот вирус полиомелита разрушает те нервные волокна, по которым с помощью кальция подаются сигналы на мышечные сокращения, и мышцы, оставшись без употребления, постепенно высыхают. С другой стороны, этот же «кальциевый привод» можно использовать в благодетельных целях. Так, сердечыные больные нуждаются в понижении ритма биений сердца, в противном случае оно при нагрузках будет требовать больше кислорода, чем способны дать сузившиеся из-за атеросклероза сосуды. Этим людям помогают «β-блокаторы» – препараты, которые несколько блокируют кальциевые каналы, тем самым понижая уровень кальция и, соответственно, уменьшая размах сокращений сердечной мышцы.

Перемещения внутри обычных клеток осуществляют другие моторы, и в отличие от миозина их изучение началось в 1985 году, когда Том Рииз и Майкл Шитц открыли первый из них – кинезин. Молекула кинезина по своей форме напоминает молекулу миозина – те же округлые головки на длиной ножке. Двумя головками молекула хватается за поверхность микротрубочки, а к торчащей вверх ножке крепится пузырек с химическими веществами. Под воздействием АТФ молекула изгибается, так что ее передняя головка уходит чуть дальше от задней и в результате хватается за микротрубочку чуть дальше по ходу движения; затем задняя головка вновь подтягивается к передней. Затем этот «силовой толчек» повторяется. В итоге пузырек, сидящий на ножке молекулы, рывками движется по микротрубке. Картина напоминает ползущую по ветке гусеницу. Кинезин способен переносить пузырьки с необходимыми клетке химическими веществами только в одном направлении – от центра клетки к ее переферии, а динеин движется в обратном направлении Микротрубки имеют встроеные в них однонаправленные блочные конструкции (с «головой» и «хвостом»). Пока непонятно, как пузырьки узнают, в какую сторону им двигаться. В 1990 году Ричард Велли открыл еще один вид молекулярного мотора - «динамин». В настоящее время считается, что в клетках действует не менее полусотни переносящих или передвигающих груз молекул работающих по отному принципу – преобразование химической энергии в энергию изменения формы гибкой молекулы, которая за счет этого изменения способна «хватать и перехватывать» некое длинное негибкое внутриклеточное волокно и «ползти» по нему с грузом. Кроме того, молекула динеина соединяется с энергетической молекулой АТФ, происходит нечто вроде натягивания лука – центр динеиновой молекулы выходит вперед, а угол между ее концами уменьшается (как сближаются концы лука). Затем, после выполненной работы, молекула динеина как бы «распрямляется» – происходит «силовой толчок» и один конец смещается относительно другого на 15 нм. Такой механизм был расскрыт под руководством С. Берджесса в 2003 году группой ученых

 

 

 

 

Молекулы осуществляющие функцию движения в нашем теле ( а- кинезин, б- динеин, в- миозин). Б) «Молекулярный мотор» кинезина, при помощи которого молекула переносит по микротрубочкам различные вещества.

Потребности работающей мышцы в АТФ удовлетворяются за счет следующих ферментативных реакций:

 

1. Резерв в виде креатинфосфата. Быстрая регенерация АТФ может быть достигнута за счет переноса фосфатной группы креатинфосфата на АДФ (ADP) в реакции, катализируемой креатинкиназой [2]. Однако и этот мышечный резерв «высокоэргического фосфата» расходуется в течение нескольких секунд. В спокойном состоянии креатинфосфат вновь синтезируется из креатина. При этом фосфатная группа присоединяется по гуанидиновой группе креатина (N-гуанидино-N-метилглицина). Креатин, который синтезируется в печени, поджелудочной железе и почках, в основном накапливается в мышцах. Здесь креатин медленно циклизуется за счет неферментативной реакции [3] с образованием креатинина, который поступает в почки и удаляется из организма.

 

2 Анаэробный гликолиз. В мышечной ткани наиболее важным долгосрочным энергетическим резервом является гликоген. В покоящейся ткани содержание гликогена составляет до 2% от мышечной массы. При деградации под действием фосфорилазы гликоген легко расщепляется с образованием глюкозо-6-фосфата, который при последующем гликолизе превращается в пируват. При большой потребности в АТФ и недостаточном поступлении кислорода пируват за счет анаэробного гликолиза восстанавливается в молочную кислоту (лактат), которая диффундирует в кровь.

 

3. Окислительное фосфорилирование. В аэробных условиях образующийся пируват поступает в митохондрии, где подвергается окислению. Окислительное фосфорилирование - наиболее эффективный и постоянно действующий путь синтеза АТФ. Однако этот путь реализуется при условии хорошего снабжения мышц кислородом. Наряду с глюкозой, образующейся при расщеплении мышечного гликогена, для синтеза АТФ используются и другие "энергоносители", присутствующие в крови: глюкоза крови, жирные кислоты и кетоновые тела.

 

 

4. Образование инозинмонофосфата [ИМФ (IMP)]. Другим источником быстрого восстановления уровня АТФ является конверсия АДФ в АТФ и АМФ (AMP), катализируемая аденилаткиназой (миокиназой). Образовавшийся АМФ за счет дезаминирования частично превращается в ИМФ (инозинмонофосфат), что сдвигает реакцию в нужном направлении.

 

Из всех способов синтеза АТФ наиболее продуктивным является окислительное фосфорилирование. За счет этого процесса обеспечиваются потребности в АТФ постоянно работающей сердечной мышцы (миокарда). Вот почему для успешной работы сердечной мышцы обязательным условием является достаточное снабжение кислородом (инфаркт миокарда — это следствие перебоев в поступлении кислорода).

 

В высокоактивных (красных) скелетных мышцах источником энергии для рефосфорилирования АДФ служит окислительное фосфорилирование в митохондриях. В обеспечении этих мышц кислородом принимает участие миоглобин (Mb) - близкий гемоглобину белок, обладающий свойством запасать кислород. В малоактивных скелетных мышцах, лишенных красного миоглобина и поэтому белых, главным источником энергии для восстановления уровня АТФ является анаэробный гликолиз. Такие мышцы сохраняют способность к быстрым сокращениям, однако они могут работать лишь короткое время, поскольку при гликолизе образование АТФ идет с низким выходом. Спустя некоторое время мышцы истощаются в результате изменения рН в мышечных клетках.

 

Расщепление гликогена контролируется гормонами. Процесс гликогенолиза стимулируется адреналином (через b-рецепторы) за счет образования цАМФ и активации киназы фосфорилазы. Активация фосфорилазы наступает также при увеличении концентрации ионов Са2+ во время мышечного сокращения.

 

– Конец работы –

Эта тема принадлежит разделу:

РАЗДЕЛ I. БИОФИЗИКА МЕМБРАН

Лекция... Тема БИОЛОГИЧЕСКИЕ МЕМБРАНЫ СТРУКТУРА СВОЙСТВА... Биофизика мембран важнейший раздел биофизики клетки имеющий большое значение для биологии Многие жизненные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электромеханическое сопряжение в мышцах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные функции биологических мембран
Элементарная живая система, способная к самостоятельному существованию, развитию и воспроизведению - это живая клетка - основа строения всех животных и растений. Важнейшими условиями существования

Структура биологических мембран
Первая модель строения биологических мембран была предложена в 1902 г. Было замечено, что через мембраны лучше всего проникают вещества, хорошо растворимые в липидах, и на основании этого было сдел

Фазовые переходы липидов в мембранах
Вещество при разных температуре, давлении, концентрациях химических компонентов может находиться в различных физических состояниях, например газообразном, жидком, твердом, плазменном. Кристаллическ

Тема: ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАНЫ
При всем многообразии строения и физико-химических свойств молекул проникающих веществ можно выделить два механизма перемещения веществ через мембрану; 1) посредством простой диффузии, т.е

Пассивный перенос веществ через мембрану
Пассивный транспорт - это перенос вещества из мест с большим значением электрохимического потенциала к местам с его меньшим значением. Пассивный транспорт идет с уменьшением энергии Гиббса

Активный транспорт веществ. Опыт Уссинга
  Активный транспорт - это перенос вещества из мест с меньшим значением электрохимического потенциала в места с его большим значением. Активный транспорт

Электрогенные ионные насосы
  Согласно современным представлениям, в биологических мембранах имеются ионные насосы,работающие за счет свободной энергии гидролиза АТФ, - специальные системы интег

Вторичный (сопряжённый) активный транспорт.
Унипорт Антипорт Симпорт (пасс

Липидные поры: стабильность и проницаемость мембран
  Бимолекулярный слой фосфолипидов составляет основу любой клеточной мембраны. Непрерывность его определяет барьерные и механические свойства клетки. В процессе жизнедеятельности непр

Типы управляемых каналов.
1) Потенциалоуправляемые каналы. «Ворота» канала системой «рычагов» соединены с диполе

Структура ионного канала.
Ион-селективный канал состоит из следующих частей : погруженной в бислой белковой части, имеющей субъединичное строение; селективного фильтра, образованного отрицательно заряженными атомами кислоро

Механизм генерации потенциала действия кардиомиоцита
Потенциал действия мышечной клетки сердца отличается от потенциала действия нервного волокна и клетки скелетной мышцы прежде всего длительностью возбуждения - деполяризации (рис).  

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ ОРГАНОВ
  Функционирование живых клеток сопровождается возникновением трансмембранных электрических потенциалов. Клетки, образуя целостный орган, формируют сложную картину его электрической а

Внешние электрические поля органов. Принцип эквивалентного генератора
При переходе от клеточного уровня на органный, возникает задача описания распределения электрических потенциалов на поверхности этого органа в результате последовательного возбуждения отдельных его

Физические основы электрокардиографии
Наибольшее распространение в медицинской практике в стоящее время получило изучение электрической активности сердца - электрокардиография. Экспериментальные данные пока

Метод исследования электрической активности головного мозга — электроэнцефалография
Регистрация и анализ временных зависимостей разностей потенциалов, созданных мозгом на поверхности головы, используется для диагностики различных видов патологии нервной системы: травм, эпилепсии,

Автоколебания и автоволны в органах и тканях
  Процессы, которые повторяется во времени, называют колебаниями. В биологических объектах наблюдаются колебания различных видов на всех уровнях их организации. Так, в клетках

Основные свойства автоволн в АС.
1. Автоволна распространяется без затухания. 2. Автоволны не интерферируют и не отражаются от препятствий. 3. Направление распространения автоволны определяется зонами рефрактерно

Ревербератор в среде с отверстием
На основе методов математического моделирования была показана возможность существования принципиально иного механизма циркуляции автоволн в активных средах. Рассмотрим процесс в плоской од

Контакты между клетками.
             

БИОФИЗИКА МЫШЕЧНОГО СОКРАЩЕНИЯ
  Мышечная активность - это одно из общих свойств высокоорганизованных живых организмов. Вся жизнедеятельность человека связана с мышечной активностью. Независимо от назначения, особе

Структура поперечно-полосатой мышцы. Модель скользящих нитей
Мышечная ткань представляет собой совокупность мышечных клеток (волокон), внеклеточного вещества (коллаген, эластин и др.) и густой сети нервных волокон и кровеносных cocyдов. Мышцы по строению дел

Биомеханика мышцы
Мышцы можно представить как сплошную среду, то есть среду, состоящую из большого числа элементов, взаимодействующих между собой без соударений и находящихся в поле внешних сил. Мышца одновременно о

Уравнение Хилла. Мощность одиночного сокращения
Зависимость скорости укорочения от нагрузки Р является важнейшей при изучении работы мышцы, так как позволяет выявить закономерности мышечного сокращения и его энергетики. Она была подробно изучена

Реологические свойства крови
Реология (от греч. rheos - течение, поток, logos - учение) -это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических осо

Основные законы гемодинамики
Гемодинамика - один из разделов биомеханики, изучающий законы движения крови по кровеносным сосудам. Задача гемодинамики - установить взаимосвязь между основными гемодинамическими показателями, а т

Биофизические функции элементов сердечно-сосудистой системы
В 1628 г. английский врач В. Гарвей предложил модель сосудистой системы, где сердце служило насосом, прокачивающим кровь по сосудам. Он подсчитал, что масса крови, выбрасываемой сердцем в артерии в

Кинетика кровотока в эластичных сосудах. Пульсовая волна. Модель Франка
Одним из важных гемодинамических процессов является распространение пульсовой волны. Если регистрировать деформации стенки артерии в двух разноудаленных от сердца точках, то окажется, что

Фильтрация и реабсорбция жидкости в капилляре.
При филътрационно-реабсорбционных процессах вода и растворенные в ней соли проходят через стенку капилляра благодаря неоднородности ее структуры. Направление и скорость движения воды через различны

ИНФОРМАЦИЯ И ПРИНЦИПЫ РЕГУЛЯЦИИ В БИОЛОГИЧЕСКИХ СИСТЕМАХ
  Биологическая кибернетика является составной частью биофизики сложных систем. Биологическая кибернетика имеет большое значение для развития современной биологии, медицины и экологии

Принцип автоматической регуляции в живых системах
Управление (регулирование) - процесс изменения состояния или режима функционирования системы в соответствии с поставленной перед ней задачей. Всякая система содержит управляющую час

Информация. Информационные потоки в живых системах
Информация (от лат. informatio – разъяснение, осведомление) - это один из широко используемых на сегодня терминов, которые употребляет человек в процессе деятельности. Создаются информационн

Биофизика рецепций
РЕЦЕПЦИЯ (от лат. receptio - принятие): в физиологии - осуществляемое рецепторами восприятие энергии раздражителей и преобразование ее в нервное возбуждение (Большой энциклопедический словарь).

Обоняние.
        [рисунок обонятельного центра]

Фоторецепторы.
С помощью глаз мы получаем до 90% информации об окружающем мире. Глаз способен различать свет, цвет, движение, способен оцениать скорость передвижения. Максимальная концентрация светочувствительных

Биофизика отклика.
Генерация рецепторного потенциала. Свет поглощается белком родопсином, бесцветным белком, который, по сути, является комплексом белка опсина и ретиналя (имеющего розовую окраску). Ретиналь может на

БИОСФЕРА И ФИЗИЧЕСКИЕ ПОЛЯ
Биосфера Земли, в том числе и человек, развивались и существуют под постоянным действием потоков электромагнитных волн и ионизирующих излучений. Естественный радиоактивный фон и фон электромагнитны

ЧЕЛОВЕК И ФИЗИЧЕСКИЕ ПОЛЯ ОКРУЖАЮЩЕГО МИРА
  Понятие «физические поля окружающего мира», является широким и может включать в себя многие явления зависимости от целей и контекста рассмотрения. Если рассматривать его в строго фи

Взаимодействие электромагнитных излучений с веществом
При прохождении ЭМ волны через слой вещества толщиной х интенсивность волны I уменьшается вследствие взаимодействия ЭМ поля с атомами и молекулами вещества. Эффекты взаимодействия могут быть различ

Дозиметрия ионизирующих излучений
К ионизирующим излучениям относятся рентгеновское и γ-излучение, потоки α-частиц, электронов, позитронов, а также потоки нейтронов и протонов. Действие ионизирующих излучений на

Естественный радиоактивный фон Земли
  На биосферу Земли непрерывно действует космическое излучение, а также потоки α- и β-частиц, γ-квантов в результате излучения различных радионуклидов, рассеянных в зем

Нарушения естественного радиоактивного фона
Нарушения радиоактивного фона в локальных условиях и тем более глобальные опасны для существования биосферы и могут привести к непоправимым последствиям. Причиной увеличения радиоактивного фона явл

Электромагнитные и радиоактивные излучения в медицине
Электромагнитные волны и радиоактивные излучения сегодня широко используются в медицинской практике для диагностики и терапии. Радиоволны применяются в аппаратах УВЧ и СВЧ-физиотерапии. Де

Электромагнитные поля.
Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение - включая рентгеновское и γ-кванты - не зарегистриро

Акустические поля.
Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека ( 0,01 Гц), со стороны коротких волн ультразвуковым излучением, в

Низкочастотные электрические и магнитные поля
Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающим

Электромагнитные волны СВЧ-диапазона
Интенсивность излучения волн СВЧ-диапазона за счет теплового движения ничтожна. Эти волны в теле человека затухают слабее, чем инфракрасное излучение. Поэтому с помощью приборов для измерения слабы

Применение СВЧ-радиометрии в медицине.
Основными сферами практического применения СВЧ-радиометрии в настоящее время представляются диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а так

Оптическое излучение тела человека
Оптическое излучение тела человека надежно регистрируется с помощью современной техники счета фотонов. В этих устройствах используют высокочувствительные фотоэлектронные умножители (ФЭУ), способные

Акустические поля человека
Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги