рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Фазовые переходы липидов в мембранах

Фазовые переходы липидов в мембранах - Лекция, раздел Физика, РАЗДЕЛ I. БИОФИЗИКА МЕМБРАН Вещество При Разных Температуре, Давлении, Концентрациях Химических Компонент...

Вещество при разных температуре, давлении, концентрациях химических компонентов может находиться в различных физических состояниях, например газообразном, жидком, твердом, плазменном. Кристаллическому твердому состоянию вещества могут соответствовать разные фазовые состояния (кристаллические модификации – графит и алмаз, например).

Твердое тело может быть как кристаллическим (имеется дальний порядок в расположении частиц на расстояниях, много превышающих межмолекулярные расстояния - кристаллическая решетка), так и аморфным, например, стекло (нет дальнего порядка в расположении атомов и молекул). Различие между твердым аморфным телом и жидкостью состоит не в наличии или отсутствии дальнего порядка, а в характере движения частиц. И молекулы жидкости, и молекулы твердого тела совершают колебательные (иногда вращательные) движения около положения равновесия. Через некоторое среднее время - "время оседлой жизни" - происходит перескок молекулы в другое положение равновесия. Различие заключается в том, что время оседлой жизни в жидкости много меньше, чем в твердом теле. Лшшдные бислойные мембраны при физиологических условиях - жидкие, время оседлой жизни фосфолипидных молекул в мембране мало: i » 10 -7 – 10-8 с.

Но молекулы в мембране размещены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты приблизительно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных голов.

Физическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическимсостоянием.

 

 

 

 

Рис.9. Расположение молекул в аморфном (а) и жидкокристаллическом состояниях (б, в, г)

Жидкие кристаллы могут образовываться не во всех веществах, а в веществах из "длинных молекул" (поперечные размеры которых меньше продольных). Могут быть различные жидкокристаллические структуры: нематическая (нитевидная), когда длинные молекулы ориентированы параллельно друг другу; смектическая (мылообразная) - молекулы параллельны друг другу и располагаются слоями; хо-лестерическая — молекулы располагаются параллельно друг другу в одной плоскости, но в разных плоскостях ориентации молекул разные (повернуты на некоторый угол в одной плоскости относительно другой).

Бислойная липидная фаза биологических мембран соответствует смектическому жидкокристаллическому состоянию.

Жидкокристаллические структуры очень чувствительны к изменению температуры, давления, химического состава, электрическому полю. Это определяет динамичность липидных бислойных мембран - изменение их структуры при различных, даже небольших изменениях внешних условий или химического состава. При изменении условий вещество может перейти в другое фазовое состояние (например, из газообразного в жидкое, из жидкого в твердое, из одной кристаллической модификации в другую).

Физическими методами исследования показано, что липидная часть биологических мембран при определенных температурах испытывает фазовый переход первого рода. В фосфолипидной мембране при понижении температуры происходит переход из жидкокристаллического в гель-состояние, которое условно иногда называют твердокристаллическим В гель-состоянии молекулы расположены еще более упорядочено, чем в жидкокристаллическом. Все гидрофобные углеводородные хвосты фосфолипидных молекул в гель-фазе полностью вытянуты строго параллельно друг другу (имеют полностью транс-конформацию). В жидком кристалле за счет теплового движения возможны транс-гош-переходы, хвосты молекул изгибаются, их параллельность друг другу в отдельных местах нарушается, особенно сильно в середине мембраны.

 

 

Рис. 10. Изменение структуры мембраны при переходе из жидкокристаллического в гель-состояние и обратно при изменении температуры.

Толщина мембраны в гель-фазе больше, чем в жидком кристалле. Однако при переходе из твердого в жидкокристаллическое состояние объем несколько увеличивается, потому что значительно увеличивается площадь мембраны, приходящаяся на одну молекулу (от 0,48 нм2 до 0,58 нм2). Так как в твердокристаллическом состоянии больше порядок, чем в жидком кристалле, ему соответствует меньшая энтропия.

Для нормального функционирования мембрана должна быть в жидкокристаллическом состоянии. Поэтому в живых системах при продолжительном понижении температуры окружающей среды наблюдается адаптационное изменение химического состава мембран, обеспечивающее понижение температуры фазового перехода. Температура фазового перехода понижается при увеличении числа ненасыщенных связей в жирно-кислотных хвостах. В хвосте молекулы может быть до четырех ненасыщенных связей.

В зависимости от химического состава липидных мембран температура фазового перехода гель - жидкий кристалл может меняться от -20 °С (для мембран из ненасыщенных липидов) до +60 °С (для насыщенных липидов). Увеличение числа ненасыщенных липидов в мембране при понижении температуры обитания наблюдается у микроорганизмов, растительных и животных клеток. Пример приспособления кле­точных мембран к температурным условиям - изменение температуры фазового перехода (за счет изменения химического состава мембранных липидов) ноги полярного оленя. Температура вдоль ноги полярного оленя от копыта до туловища может зимой меняться от -20 °С до +30 °С. Клеточные мембраны у дистальной части ноги оленя содержат больше ненасыщенных фосфолипидов.

По-видимому, первичный механизм криоповреждений (повреждений при охлаждениях) биологических мембран связан с фазовым переходом в гель-состояние. Поэтому биологические мембраны содержат большое количество холестерина, уменьшающего изменения в мембране, сопровождающие фазовый переход. У некоторых микроорганизмов биологические мембраны находятся при температурах, лишь на немного превышающих температуру фазовых переходов липидов. Мембрана содержит десятки разных липидов, которым соответствуют разные температуры фазового перехода, в том числе близкие к физиологическим. При понижении температуры в мембране происходят фазовые превращения в липидном бислое.

В работах В.Ф. Антонова доказано, что при фазовых переходах из гель- в жидкокристаллическое состояние и обратно в липидном бислое образуются сквозные каналы, радиусом 1-3 нм, по которым через мембрану могут переноситься ионы и низкомолекулярные вещества. Вследствие этого при температуре фазового перехода резко увеличивается ионная проводимость мембраны. Увеличение ионной проводимости мембран может спасти клетку от криоповреждений за счет увеличения выхода из клетки воды и солей - привести к нарушению ее барьерной функции, что препятствует кристаллизации воды внутри клетки. Повышение ионной проводимости мембран при фазовом переходе, возможно, позволяет поддерживать метаболический обмен некоторых микроорганизмов. Большой интерес представляет этот эффект для объяснения термо- и хеморецепции. Известно, что перенос ионов через мембрану лежит в основе формирования биопотенциалов, изменение ионной проводимости обусловливает нервный импульс. Не исключено, что нервный импульс, свидетельствующий о понижении или повышении температуры, образуется за счет изменения ионной проницаемости липидного бислоя при фазовом переходе мембранных липидов.

По-видимому, и некоторые виды хеморецепции могут быть связаны с фазовым переходом мембранных липидов, поскольку фазовый переход может быть вызван не только изменением температуры, но и изменением химического состава окружающей среды. Например, доказано, что при данной температуре фазовый переход из жидкокристаллического состояния в гель-состояние может быть вызван увеличением концентрации Са2+ в физиологическом диапазоне от 1 до 10 ммоль/л в водном растворе, окружающем мембрану.

Очень существенным является то обстоятельство, что молекулы фосфолипидов имеют два хвоста. Такая молекула в пространстве имеет форму, близкую к цилиндру. Из молекул фосфолипидов в водной среде происходит самосборка бислойной мембраны. Присутствие молекул с одним хвостом (лизолецитин), имеющих в пространстве форму, близкую к конусу, разрушает клеточные мембраны. Фосфолипидные молекулы, лишенные одного из хвостов, образуют поры в бислойной мембране, т.е. нарушается барьерная функция мембран.

Плотность упаковки фосфолипидов в липидном каркасе зависит от того, какие жирные кислоты входят в состав фосфолипидов – чем больше двойных связей между атомами углерода в СН-цепях, тем больше промежуток между соседними молекулами в мембранном каркасе, что, в свою очередь, уменьшает его жесткость и усиливает проницаемость мембраны для веществ.

Вместе с тем на плотность упаковки фосфолипидов влияет холестерин –стероид, в молекуле которого четыре кольца. Холестерин способен встраиваться в липидный строй. При этом мембрана уплотняется. Площадь, занимаемая фосфолипидами мембраны сокращается, до тех пор, пока на одну молекулу холестерина не будет приходиться 2 молекулы фосфолипидов. При этом мембрана становится более вязкой.

Третий класс мембранных липидов – гликолипиды – играет важную роль в предотвращении слипания соседних клеток. Эти липиды обеспечивают отрицательный заряд на поверхности мембраны и способствуют электростатическому отталкиванию. При избыточном содержании гликолипидов возможно сильное разобщение липидов и нарушение информационного взаимодействия.

Установлены значительные различия липидного состава разных биологических мембран. Мембранам свойственна постоянная перестройка липидного состава. Разрушение липидов происходит под действием лизолейцина (двуцепочный фосфолипид превращается в одноцепочный). Реакция катализируется ферментом – фосфолипазой А2. В естественных условиях эндогенная фосфолипаза А2 обеспечивает постоянное обновление липидного каркаса, а во внутренней регуляции, служит катализатором синтеза простагландинов из арахидоновой кислоты. Избыточное поступление в организм человека фосфолипазы (при укусах некоторых змей) вызывает разрушение мембран, несовместимое с жизнью. Другая фосфолипаза С, выделяемая некоторыми микроорганизмами, «откусывает» головы липидов, и также приводит в разрушению липидного каркаса мембраны.

 

– Конец работы –

Эта тема принадлежит разделу:

РАЗДЕЛ I. БИОФИЗИКА МЕМБРАН

Лекция... Тема БИОЛОГИЧЕСКИЕ МЕМБРАНЫ СТРУКТУРА СВОЙСТВА... Биофизика мембран важнейший раздел биофизики клетки имеющий большое значение для биологии Многие жизненные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Фазовые переходы липидов в мембранах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные функции биологических мембран
Элементарная живая система, способная к самостоятельному существованию, развитию и воспроизведению - это живая клетка - основа строения всех животных и растений. Важнейшими условиями существования

Структура биологических мембран
Первая модель строения биологических мембран была предложена в 1902 г. Было замечено, что через мембраны лучше всего проникают вещества, хорошо растворимые в липидах, и на основании этого было сдел

Тема: ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАНЫ
При всем многообразии строения и физико-химических свойств молекул проникающих веществ можно выделить два механизма перемещения веществ через мембрану; 1) посредством простой диффузии, т.е

Пассивный перенос веществ через мембрану
Пассивный транспорт - это перенос вещества из мест с большим значением электрохимического потенциала к местам с его меньшим значением. Пассивный транспорт идет с уменьшением энергии Гиббса

Активный транспорт веществ. Опыт Уссинга
  Активный транспорт - это перенос вещества из мест с меньшим значением электрохимического потенциала в места с его большим значением. Активный транспорт

Электрогенные ионные насосы
  Согласно современным представлениям, в биологических мембранах имеются ионные насосы,работающие за счет свободной энергии гидролиза АТФ, - специальные системы интег

Вторичный (сопряжённый) активный транспорт.
Унипорт Антипорт Симпорт (пасс

Липидные поры: стабильность и проницаемость мембран
  Бимолекулярный слой фосфолипидов составляет основу любой клеточной мембраны. Непрерывность его определяет барьерные и механические свойства клетки. В процессе жизнедеятельности непр

Типы управляемых каналов.
1) Потенциалоуправляемые каналы. «Ворота» канала системой «рычагов» соединены с диполе

Структура ионного канала.
Ион-селективный канал состоит из следующих частей : погруженной в бислой белковой части, имеющей субъединичное строение; селективного фильтра, образованного отрицательно заряженными атомами кислоро

Механизм генерации потенциала действия кардиомиоцита
Потенциал действия мышечной клетки сердца отличается от потенциала действия нервного волокна и клетки скелетной мышцы прежде всего длительностью возбуждения - деполяризации (рис).  

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ ОРГАНОВ
  Функционирование живых клеток сопровождается возникновением трансмембранных электрических потенциалов. Клетки, образуя целостный орган, формируют сложную картину его электрической а

Внешние электрические поля органов. Принцип эквивалентного генератора
При переходе от клеточного уровня на органный, возникает задача описания распределения электрических потенциалов на поверхности этого органа в результате последовательного возбуждения отдельных его

Физические основы электрокардиографии
Наибольшее распространение в медицинской практике в стоящее время получило изучение электрической активности сердца - электрокардиография. Экспериментальные данные пока

Метод исследования электрической активности головного мозга — электроэнцефалография
Регистрация и анализ временных зависимостей разностей потенциалов, созданных мозгом на поверхности головы, используется для диагностики различных видов патологии нервной системы: травм, эпилепсии,

Автоколебания и автоволны в органах и тканях
  Процессы, которые повторяется во времени, называют колебаниями. В биологических объектах наблюдаются колебания различных видов на всех уровнях их организации. Так, в клетках

Основные свойства автоволн в АС.
1. Автоволна распространяется без затухания. 2. Автоволны не интерферируют и не отражаются от препятствий. 3. Направление распространения автоволны определяется зонами рефрактерно

Ревербератор в среде с отверстием
На основе методов математического моделирования была показана возможность существования принципиально иного механизма циркуляции автоволн в активных средах. Рассмотрим процесс в плоской од

Контакты между клетками.
             

БИОФИЗИКА МЫШЕЧНОГО СОКРАЩЕНИЯ
  Мышечная активность - это одно из общих свойств высокоорганизованных живых организмов. Вся жизнедеятельность человека связана с мышечной активностью. Независимо от назначения, особе

Структура поперечно-полосатой мышцы. Модель скользящих нитей
Мышечная ткань представляет собой совокупность мышечных клеток (волокон), внеклеточного вещества (коллаген, эластин и др.) и густой сети нервных волокон и кровеносных cocyдов. Мышцы по строению дел

Биомеханика мышцы
Мышцы можно представить как сплошную среду, то есть среду, состоящую из большого числа элементов, взаимодействующих между собой без соударений и находящихся в поле внешних сил. Мышца одновременно о

Уравнение Хилла. Мощность одиночного сокращения
Зависимость скорости укорочения от нагрузки Р является важнейшей при изучении работы мышцы, так как позволяет выявить закономерности мышечного сокращения и его энергетики. Она была подробно изучена

Электромеханическое сопряжение в мышцах
Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом

Реологические свойства крови
Реология (от греч. rheos - течение, поток, logos - учение) -это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических осо

Основные законы гемодинамики
Гемодинамика - один из разделов биомеханики, изучающий законы движения крови по кровеносным сосудам. Задача гемодинамики - установить взаимосвязь между основными гемодинамическими показателями, а т

Биофизические функции элементов сердечно-сосудистой системы
В 1628 г. английский врач В. Гарвей предложил модель сосудистой системы, где сердце служило насосом, прокачивающим кровь по сосудам. Он подсчитал, что масса крови, выбрасываемой сердцем в артерии в

Кинетика кровотока в эластичных сосудах. Пульсовая волна. Модель Франка
Одним из важных гемодинамических процессов является распространение пульсовой волны. Если регистрировать деформации стенки артерии в двух разноудаленных от сердца точках, то окажется, что

Фильтрация и реабсорбция жидкости в капилляре.
При филътрационно-реабсорбционных процессах вода и растворенные в ней соли проходят через стенку капилляра благодаря неоднородности ее структуры. Направление и скорость движения воды через различны

ИНФОРМАЦИЯ И ПРИНЦИПЫ РЕГУЛЯЦИИ В БИОЛОГИЧЕСКИХ СИСТЕМАХ
  Биологическая кибернетика является составной частью биофизики сложных систем. Биологическая кибернетика имеет большое значение для развития современной биологии, медицины и экологии

Принцип автоматической регуляции в живых системах
Управление (регулирование) - процесс изменения состояния или режима функционирования системы в соответствии с поставленной перед ней задачей. Всякая система содержит управляющую час

Информация. Информационные потоки в живых системах
Информация (от лат. informatio – разъяснение, осведомление) - это один из широко используемых на сегодня терминов, которые употребляет человек в процессе деятельности. Создаются информационн

Биофизика рецепций
РЕЦЕПЦИЯ (от лат. receptio - принятие): в физиологии - осуществляемое рецепторами восприятие энергии раздражителей и преобразование ее в нервное возбуждение (Большой энциклопедический словарь).

Обоняние.
        [рисунок обонятельного центра]

Фоторецепторы.
С помощью глаз мы получаем до 90% информации об окружающем мире. Глаз способен различать свет, цвет, движение, способен оцениать скорость передвижения. Максимальная концентрация светочувствительных

Биофизика отклика.
Генерация рецепторного потенциала. Свет поглощается белком родопсином, бесцветным белком, который, по сути, является комплексом белка опсина и ретиналя (имеющего розовую окраску). Ретиналь может на

БИОСФЕРА И ФИЗИЧЕСКИЕ ПОЛЯ
Биосфера Земли, в том числе и человек, развивались и существуют под постоянным действием потоков электромагнитных волн и ионизирующих излучений. Естественный радиоактивный фон и фон электромагнитны

ЧЕЛОВЕК И ФИЗИЧЕСКИЕ ПОЛЯ ОКРУЖАЮЩЕГО МИРА
  Понятие «физические поля окружающего мира», является широким и может включать в себя многие явления зависимости от целей и контекста рассмотрения. Если рассматривать его в строго фи

Взаимодействие электромагнитных излучений с веществом
При прохождении ЭМ волны через слой вещества толщиной х интенсивность волны I уменьшается вследствие взаимодействия ЭМ поля с атомами и молекулами вещества. Эффекты взаимодействия могут быть различ

Дозиметрия ионизирующих излучений
К ионизирующим излучениям относятся рентгеновское и γ-излучение, потоки α-частиц, электронов, позитронов, а также потоки нейтронов и протонов. Действие ионизирующих излучений на

Естественный радиоактивный фон Земли
  На биосферу Земли непрерывно действует космическое излучение, а также потоки α- и β-частиц, γ-квантов в результате излучения различных радионуклидов, рассеянных в зем

Нарушения естественного радиоактивного фона
Нарушения радиоактивного фона в локальных условиях и тем более глобальные опасны для существования биосферы и могут привести к непоправимым последствиям. Причиной увеличения радиоактивного фона явл

Электромагнитные и радиоактивные излучения в медицине
Электромагнитные волны и радиоактивные излучения сегодня широко используются в медицинской практике для диагностики и терапии. Радиоволны применяются в аппаратах УВЧ и СВЧ-физиотерапии. Де

Электромагнитные поля.
Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение - включая рентгеновское и γ-кванты - не зарегистриро

Акустические поля.
Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека ( 0,01 Гц), со стороны коротких волн ультразвуковым излучением, в

Низкочастотные электрические и магнитные поля
Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающим

Электромагнитные волны СВЧ-диапазона
Интенсивность излучения волн СВЧ-диапазона за счет теплового движения ничтожна. Эти волны в теле человека затухают слабее, чем инфракрасное излучение. Поэтому с помощью приборов для измерения слабы

Применение СВЧ-радиометрии в медицине.
Основными сферами практического применения СВЧ-радиометрии в настоящее время представляются диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а так

Оптическое излучение тела человека
Оптическое излучение тела человека надежно регистрируется с помощью современной техники счета фотонов. В этих устройствах используют высокочувствительные фотоэлектронные умножители (ФЭУ), способные

Акустические поля человека
Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги