рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Фторидофосфат кобальта-лития

Фторидофосфат кобальта-лития - раздел Химия, Поиск новых фторидофосфатов лития и переходных металлов Фторидофосфат Кобальта-Лития. В Согласии С Литературными Данными [6], Licopo4...

Фторидофосфат кобальта-лития. В согласии с литературными данными [6], LiCoPO4 удалось получить на воздухе. На первой стадии смесь исходных соединений поместили в сушильный шкаф при температуре 170 C, выдержали 2 часа, затем переместили в муфельную печь, и медленно нагрели до 680 C, выдержав 40 минут, после чего тщательно растерли и выдержали при 750& #61616;C 30 минут.

Получен порошок фиолетового цвета, по данным рентгенофазового анализа соответствующий фосфату кобальта-лития. Однако на второй стадии, после его реакции с LiF при 750С, вместо ожидаемого Li2CoPO4F обнаружено большое количество Co3O4 в смеси с исходным LiCoPO4 и неизвестными фазами. Поскольку без фторида лития этого оксида кобальта не наблюдалось, можно предположить, что к его образованию привело сочетание сразу нескольких побочных явлений: гидролиз фторида водяным паром увеличил содержание Li2O, поэтому менее основный CoO был вытеснен из фосфата, чему способствовало его окисление до Co3O4. Поэтому присутствие кислорода воздуха и водяных паров мешает при твердофазном синтезе фторидофосфата кобальта.

После этого весь эксперимент последовательно проведен в инертной атмосфере. Для чего на первой стадии снова приготовили смесь веществ, спрессовав, поместили в трубчатую печь выдержали в интервале температур от 120 до 300 C около часа, затем стали повышать температуру на 50C каждые 10-15 минут, доведя до 750 C, выдержали 1,5 часа. Преимуществом был тот факт, что реакция проходила при постоянном токе азота, после охладили систему в азоте, извлекли таблетку и растерли ее, порошок фиолетового цвета.

Образец, взятый на рентгенофазовый анализ, показал наличие фосфата кобальта-лития и незначительного количества примесей по сравнению с тем порошком, который был получен в воздухе.

Затем добавили расчетное количество LiF и, спрессовав таблетку, поместили в трубчатую печь, нагрели в токе азота до 750 C, выдержали 2 часа, затем охладили систему в присутствии азота, таблетку извлекли и растерли, полученный темно-фиолетовый порошок проверили с помощью рентгенофазового анализа. На рентгенограмме отсутствовали пики исходных LiCoPO4, LiF, оксидов кобальта.

По расположению и интенсивности пиков рентгенограмма этого продукта оказалась сходна с расчетной рентгенограммой Li2NiPO4F, что позволило полностью проиндицировать ее на основе аналогичной ромбической элементарной ячейки (табл. 4). Впрочем, попытка механического переноса индексов hkl с одной рентгенограммы на другую первоначально не привела к удовлетворительному результату. Лишь после нескольких проб и ошибок выяснилось, что замещение никеля кобальтом ведет к анизотропному изменению параметров (a уменьшается, b, c и объем возрастают, см. табл. 5), поэтому некоторые линии на рентгенограмме меняются местами.

Правильность индицирования подтверждается хорошим согласием вычисленных и измеренных значений углов (табл. 4). Найденный объем ячейки, несколько больший, чем у никелевого аналога (табл. 5), хорошо согласуется с соотношением размеров ионов никеля и кобальта (табл. 2). Таким образом, синтезировано новое соединение Li2CoPO4F, изоструктурное Li2NiPO4F. Таблица 4 Результаты индицирования рентгенограммы нового соединения Li2CoPO4F в сравнении с рентгенограммой Li2NiPO4F, рассчитанной на основе его кристаллической структуры с помощью программы Lazy Pulverix.

Параметры решетки уточнены с помощью программы Celref 3 и приведены в таблице 5. hkl Li2NiPO4F Li2CoPO4F I 2выч Iэкс 2экс 2выч  (2) 002 86 16.34 60 16.33 16.32 0.01 200 100 16.93 85 17.03 16.98 0.05 211 40 23.58 50 23.50 23.51 - 0.01 013 32 28.48 25 28.40 28.35 0.05 311 14 30.42 20 30.44 30.42 0.02 022 45 32.93 40 32.59 32.59 0.00 004 36 33.03 40 32.97 32.98 - 0.01 400 47 34.25 100 34.31 34.36 - 0.05 222 45 37.25 50 36.98 36.98 0.00 410 7 37.20 10 37.25 37.23 0.02 402 5 38.17 20 38.25 38.26 - 0.01 123 16 38.92 10 38.62 38.62 0.00 214 11 40.10 25 40.00 40.01 - 0.01 224 16 47.56 30 47.29 47.31 - 0.02 422 32 48.24 20 48.08 48.08 0.00 424 15 56.99 25 56.82 56.83 - 0.01 026 28 58.93 10 58.65 58.65 0.00 Таблица 5 Сравнение параметров ромбических решеток Li2MPO4F (в скобках – стандартное отклонение последней значащей цифры) M a Å b Å c Å V Ni 10.473(3) 6.2887(8) 10.846(1) 714.3 Co 10.440(5) 6.368(9) 10.863(8) 722.3(8) 3.3. Соединения, содержащие марганец и железо Попытки синтеза Li2FePO4F проводили в инертной атмосфере, так как соединения железа (2+) быстро окисляются на воздухе.

По той же причине трудно подобрать устойчивую весовую форму исходного соединения железа (2+). В данной работе для приготовления промежуточного соединения LiFePO4 использовали FeC2O4*2H2O, желтый осадок которого был получен и проанализирован, как описано выше. В литературе имеются противоречивые сведения о продуктах разложения чистого оксалата железа.

По одним данным, получается оксид железа (2+), по другим - пирофорный металл. Мы предполагали (как и подтвердилось впоследствии), что для окисления этого металла будет достаточно примеси кислорода в азоте.

Если бы при первом опыте был обнаружен металл, то можно было бы в дальнейшем использовать сочетание FeC2O4*2H2O + Fe2O3 для получения заданной степени окисления железа.

Смесь оксалата железа, карбоната лития и дигидрофосфата аммония, спрессовав, поместили в трубчатую печь и при постоянном токе азота выдержали в интервале температур от 120 до 300 C около часа, затем стали повышать температуру на 50C каждые 10-15 минут, доведя до 750 C, выдержали 1,5 часа, после чего охладили систему в азоте, извлекли таблетку и растерли ее. Получен порошок черного цвета, притягивающийся к магниту.

Но по данным рентгенофазового анализа ферромагнитная фаза - это не металлическое железо, а магнетит Fe3O4. Вторую стадию, реакцию с LiF, проводили при 750 C в течение 2 часов в токе азота. В результате таблетка сильно деформировалась (что указывает на появление небольшого количества жидкой фазы), а рентгенофазовый анализ показал смесь LiFePO4 + LiF. Таким образом, ожидаемое соединение Li2FePO4F не получилось.

Согласно литературным данным [6], LiMnPO4 может быть синтезирован на воздухе при 780С. Поскольку соединения марганца (2+) окисляются почти так же легко, как соединения железа (2+), это казалось маловероятным и в данной работе не подтвердилось. После обжига на воздухе на рентгенограммах неизменно присутствовали яркие отражения Mn2O3. Поэтому синтез был проведен по той же схеме, что и в случае железа - через оксалат марганца (2+) в азоте.

При температуре заключительного обжига 750С в течение 1,5 часа получен практически чистый LiMnPO4 серого цвета. Но взаимодействия LiF с LiMnPO4 не обнаружено даже вблизи температуры плавления смеси. Отсутствие в этих опытах соединений Li2MPO4F (M = Fe, Mn) нельзя объяснить ни окислением (поскольку найденные фазы соответствуют желаемой степени окисления железа и марганца), ни гидролизом фторида (фторид лития обнаружен), ни кинетическими затруднениями (температура была достаточно высокой, близкой к плавлению, и соединения никеля и кобальта в тех же условиях получались легко). Очевидно, соединения Li2MPO4F (M = Fe, Mn) в рассматриваемых условиях термодинамически менее стабильны, чем смеси LiMPO4 + LiF. Вероятно, катионы железа и марганца чрезмерно крупные (см. табл. 2) для стабильности данного типа структуры). Было бы интересно проверить влияние давления на направление реакции LiMPO4 + LiF = Li2MPO4F. Для этого по известным параметрам решетки рассчитаны формульные объемы реагентов и продуктов (табл. 6). Из нее видно, что реакция идет с небольшим увеличением объема, поэтому высокие давления будут, вероятно, смешать равновесие влево, то есть еще больше дестабилизировать фторидофосфаты. Таблица 6 Сравнение объемов (в кубических ангстремах) в расчете на формульную единицу реагентов и продуктов M V/Z Δ V LiF LiMPO4 Li2MPO4F Ni 16,35 [22] 68,65-69,24 [6, 23, 24] 89,29 [11] 3,7-4,3 Co 16,35 70,80-71,03 [25, 26] 90,30 2,9-3,1 3.4.

– Конец работы –

Эта тема принадлежит разделу:

Поиск новых фторидофосфатов лития и переходных металлов

Используемые в них электродные материалы обладают рядом недостатков и поэтому актуален поиск новых материалов. В частности, для положительного электрода литий-ионного аккумулятора нужны… Батарея - устройство для накопления энергии, или, когда речь идёт о современных технологиях, под батареей обычно…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Фторидофосфат кобальта-лития

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Литературный обзор
Литературный обзор. Литий – ионные аккумуляторы Становление технологий никель-металлгидридных и литий-ионнных аккумуляторов вытесняет известные никель-кадмиевые аккумуляторы. Батарея - устро

Литий-ионные аккумуляторы
Литий-ионные аккумуляторы. где отрицательным электродом служит не чистый литий, а фаза внедрения лития в подходящую матрицу с достаточно низким электродным потенциалом. Углерод оказался очень удобн

Смешанные фосфаты лития и переходных металлов
Смешанные фосфаты лития и переходных металлов. Двойные фосфаты, имеющие общую формулу LiMPO4 (где M = Mn, Fe, Co, Ni), изоструктурны оливину - силикату магния и железа (Mg,Fe)2SiO4. Таблица 1 Парам

Смешанные фторидофосфаты щелочных и переходных металлов
Смешанные фторидофосфаты щелочных и переходных металлов. Просмотр реферативных журналов, баз данных PDF-2 и ICSD обнаружил только три фазы формульного типа A+2MPO4F, из них с литием только одна: Li

Исходные вещества и их анализ
Исходные вещества и их анализ. Фосфор, фтор и литий вводили в виде дигидрофосфата аммония, высушенного при 100 С, фторида и карбоната лития, высушенных при 200 С. Реактивный

Проведение синтезов
Проведение синтезов. При нагревании фторида лития с дигидрофосфатом аммония возможно улетучивание фтороводорода. Поэтому проведение синтеза в одну стадию вряд ли возможно. Сначала нуж

Фторидофосфат никеля-лития
Фторидофосфат никеля-лития. Синтез проводился в две стадии, как описано выше. Если исходным веществом был ацетат никеля, то при его разложении происходило частичное восстановление никеля (образец ч

Опыт по окислению
Опыт по окислению. Суть этого опыта сводится к попытке окисления полученного фторидофосфата кобальта-лития раствором брома в метаноле с целью извлечения части или всего лития с сохранением каркаса

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги