рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вопрос 1. (Закономерности формирования структуры материала)

Вопрос 1. (Закономерности формирования структуры материала) - Лекция, раздел Химия, Вопрос 1. (Закономерности формирования структуры материала) 1) Понятие «Структура Материала». Атомно-Кристаллическая Структура Ма...

1) Понятие «структура материала». Атомно-кристаллическая структура материалов. Аморфные и кристаллические материалы. Элементарная ячейка и её характеристики.

 

Под структурой понимается совокупность устойчивых связей тела, обеспечивающих его целостность. Такое определение является достаточно общим. Поэтому его стараются конкретизировать, например, путем введения дополнительных понятий: кристаллическая структура, аморфная структура. Различают микро- и макроструктуру.

Макроструктура — строение металла, видимое невооруженным глазом или при небольших увеличениях. Выявляет характер излома, усадочные раковины, поры, размеры и форму крупных кристаллов, трещины, химическую неоднородность и тд.

Микроструктура — строение металла, выявл. с помощью свет, и эл-нных микроскопов. Определяет размеры форму кристаллов, их распределение и относительные объемные количества, форму инородных включений и микропустот, ориентирование кристаллов.

Субструктураметалла, внутреннее строение зёрен, характеризуемое типом, количеством и взаимным расположением дефектов кристаллической решётки. В недеформированном металле зёрна состоят из блоков (субзёрен), развёрнутых друг относительно друга на углы порядка угловых минут; эти блоки разделены субграницами.

Под атомно-кристаллической структурой понимают взаимное расположение атомов в кристалле. Кристалл состоит из атомов (ионов), расположенных в определенном порядке, который периодически повторяется в трех измерениях. Наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решётку, называют элементарной ячейкой.

Для характеристики элементарной ячейки используют параметры кристаллической решётки: три ребра а, в, с, измеряемых в ангстремах (1Å = 1* 10-8см) или в килоиксах – kX (1kX = 1,00202 Å) и три угла a, b, g, а также компактность структуры h - отношение объема, занимаемого атомами, к объёму ячейки ( для решётки ОЦК h = 64 %, для решётки ГЦК h = 74 %) и координационное числоК - число ближайших соседей данного атома

В кристаллических веществах атомы расположены в строгом порядке — в узлах кристаллической решетки. В аморфных веществах атомы расположены беспорядочно, так же, как и в жидкостях. Кристаллические вещества имеют строго определенную температуру плавления. Это объясняется так: атомы в узлах кристаллической решетки не могут свободно двигаться, а могут лишь совершать небольшие колебания. При нагревании твердого кристаллического вещества атомы в узлах решетки начинают колебаться сильнее. Наконец, при какой-то определенной температуре колебания становятся настолько сильными, что атомы больше не могут удерживаться в кристаллической решетке и вещество плавится, превращаясь в жидкость. Аморфные вещества не имеют строго определенной температуры плавления. Так как в аморфном веществе атомы расположены беспорядочно, то при повышении температуры они приобретают все большую свободу движения, и вещество не плавится, а постепенно размягчается, превращаясь в очень вязкую жидкость. Чем выше температура, тем меньше вязкость, тем более подвижна жидкость.

 

2) Обозначение кристаллографических плоскостей и направлений. Анизотропия. Элементарная ячейка ГПУ. Поры в кристаллической решётке.

 

Простейшим типом кристаллической ячейки является кубическая решётка. В простой кубической решётке атомы расположены (упакованы) недостаточно плотно.

Стремление атомов металла занять места, наиболее близкие друг к другу, приводит к образованию решеток других типов(объёмноцентрированной кубической решётки (ОЦК), гранецентрированной кубической решётки (ГЦК) ).

 

гексагональная плотно упакованная решётка (ГПУ) (рис.2.2в) с параметром: с / а » 1,633

 

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и в конечном результате разные свойства. Зависимость свойств от направления называется анизотропией.

Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.

Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.

Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X ,Y, Z – кристаллографические оси). За единицу измерения принимается период решетки.

Для определения индексов кристаллографической кристаллографической плоскости необходимо:

– установить координаты точек пересечения плоскости с осями координат в единицах периода решетки;

– взять обратные значения этих величин;

– привести их к наименьшему целому кратному, каждому из полученных чисел.

Полученные значения простых целых чисел, не имеющие общего множителя, являются индексами Миллера для плоскости, указываются в круглых скобках. Другими словами, индекс по оси показывает на сколько частей плоскость делит осевую единицу по данной оси. Плоскости ,параллельные оси имеют по ней индекс 0 (110).

 

В пространственной решетке помимо атомов имеется свободное пространство, образующее поры. Различают октаэдрические и тетраэдрические поры. (плохо).

 

– Конец работы –

Эта тема принадлежит разделу:

Вопрос 1. (Закономерности формирования структуры материала)

ЛЕКЦИИ смотреть... Влияние легирующих элементов на равновесную структуру сталей Критические... В современном машино и приборо строении широкое применение находят стали в которых помимо железа угле рода и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вопрос 1. (Закономерности формирования структуры материала)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Типы кристаллов и их свойства. Металлические и ионные кристаллы. Ковалентные и молекулярные кристаллы. Полиморфизм кристаллических тел.
Большинство твердых тел находится в кристаллическом состоянии, которое характеризуется дальним порядком, то есть трехмерной периодичностью структуры по всему объему твердого тела (кристаллической р

Формирование структуры литых материалов. Первичная кристаллизация. Кривые охлаждения, критический размер зародыша. Ликвация.
Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кри­сталлизацией.

Формирование структуры литых материалов. Форма и размер кристаллов. Модифицирование. Аморфное состояние материала.
  Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кри­сталлизацией. Образов

Формирование структуры литых материалов. Размер кристаллов при литье и способы их измельчения.
Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кри­сталлизацией. Образование новых крист

Пластическая деформация монокристаллов и поликристаллов. Изменение структуры и свойств при пластической деформации.
На начальной стадии пластической деформации монокристалла осуществляется движением дислокаций по одной системе плоскостей – стадия легкого скольжения. Дислокации н

Влияние нагрева на структуру и свойства пластически деформированного металла. Текстура деформации.
Текстура деформации. При большой степени деформации возникает преимущественная ориентация кристаллографических плоскостей и направлений в

Правило отрезков или правило рычага
В процессе кристаллизации изменяются концентрация компонента в фазах и количество фаз. Для их определения служит правило фаз. Рассмотрим процесс кристаллизации произвольного сплава (рис.6.

Правило отрезков или правило рычага
В процессе кристаллизации изменяются концентрация компонента в фазах и количество фаз. Для их определения служит правило фаз. Рассмотрим процесс кристаллизации произвольного сплава (рис.6.

Диаграмма состояния железоуглеродистых сплавов. Компоненты диаграммы, изотермические превращения.
Диаграмма железоуглеродистых сплавов может быть представлена в двух вариантах: метастабильном, отражающем превращения в системе “железо-карбид железа”, и стабильном, отражающем превращения в систем

Термическая обработка сплавов, не имеющих превращений в твердом состоянии.
Термическую обработку применяют для снижения остаточных напряжений в изделиях, рекристаллизации деформированных полуфабрикатов, уменьшения внутрикристаллической ликвидации в слитках или отливках. С

Изменение механических свойств сплава в зависимости от температуры и времени старения.
В наиболее общем случае предел прочности, предел текучести и твердость сплава с увеличением продолжительности старения возрастают, достигают максимума и затем снижаются (смотрите кривые Т2

Типы выделений при старении (структура свойства).
Основные структурные изменения при старении сводятся к фазным этапам распада пересыщенного твердого раствора, полученного в результате закалки сплава. Так как распад пересыщенного раствора

Типы выделений
В зависимости от строения поверхности раздела между выделением и матрицей различают три типа выделений: полностью когерентные, частично когерентные и некогерентные. Схе

Природно-мелкозернистые стали.
Природно-мелкозернистыми называют стали, в которых при нагреве до 1000-1100 °С кристаллы аустенита растут с малой скоростью; к таковым относятся стали, дополнительно раскислявшиеся алюминием, а так

Закономерности формирования структуры стали при перлитном превращении.
Перлитное превращение - эвтектоидное превращение (распад) аустенита, происходящее ниже 727°С (по другим источникам 723°С) и заключающееся в одновременном зарождении и росте внутри аустенита (ɣ

Закономерности формирования структуры стали при мартенситном превращении.
МАРТЕНСИТ– структура сплавов, возникающая при их термической обработке при быстром охлаждении. В железоуглеродистых сплавах (сталях и чугунах) мартенсит возникает при содержании уг

Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке.
Закалка – термическая обработка, в результате которой в сплавах образуется неравновесная структура. Неравновесные структуры можно получить только в том случае, если в сплавах имеют

Отпуск стали. Виды отпуска. Изменение структуры и свойств стали при отпуске.
Отпуском называется операция термической обработки, состоящая в нагреве закаленной стали до температуры ниже критической АC1, выдержке при этой температуре и последующем медленном или быстром охлаж

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги