рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке.

Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке. - Лекция, раздел Химия, Вопрос 1. (Закономерности формирования структуры материала) Закалка – Термическая Обработка, В Результате Которой В Спла...

Закалка – термическая обработка, в результате которой в сплавах образуется неравновесная структура. Неравновесные структуры можно получить только в том случае, если в сплавах имеются превращения в твёрдом состоянии: переменная растворимость, полиморфные превращения твёрдых растворов, распад высокотемпературного твёрдого раствора по эвтектоидной реакции. Для получения неравновесной структуры сплав нагревают выше температуры фазового превращения в твёрдом состоянии, после чего быстро охлаждают, чтобы предотвратить равновесное превращение при охлаждении.

Конструкционные и инструментальные сплавы закаливают для упрочнения (особенно – с эвтектоидным превращением). Прочность возрастает либо вследствие мартенситного фазового перехода, либо из-за понижения температуры эвтектоидной реакции, приводящей к измельчению зёрен, образующих эвтектоидную смесь.

Нормализация (термообработка) — вид термической обработки стали, заключающийся в нагреве её выше верхней критической точки, выдержке при этой температуре и последующем охлаждении на спокойном воздухе с целью придания металлу однородной мелкозернистой структуры (не достигнутой при предыдущих процессах — литьё, ковке или прокатке) и как следствие — повышение его механических свойств (пластичности и ударной вязкости).

Закалочные напряжения складываются из термических и структурных напряжений. При закалке всегда возникает перепад температур по сечению изделия. Разная величина термического сжатия наружных и внутренних слоев в период охлаждения обусловливает возникновение термических напряжений. [1]

Суммарные закалочные напряжения растут с увеличением температуры нагрева под закалку и с повышением скорости охлаждения, так как в обоих этих случаях возрастает перепад температур по сечению изделия. Увеличение перепада температур приводит к росту термических и структурных напряжений. [2]

Хотя закалочные напряжения действительно существуют, трудно предположить, что они могут вызвать увеличение предела текучести в семь раз. [3]

Формирование временных и остаточных закалочных напряжений в детали происходит под действием температурных полей, изменяющихся в процессе закалки. Поэтому для исследования напряжений необходимо уметь рассчитывать температуру в любой точке детали для любого момента времени. [4]

Отпуск снижает закалочные напряжения. После отпуска следует охлаждение на воздухе, в период которого происходит превращение в мартенсит той части аустенита, которая сохранилась в стали в результате прерванного охлаждения. [5]

Охлаждение при закалке может производиться различными способами. Наиболее широко применяется охлаждение в масле. Для уменьшения опасности появления закалочных трещин перед погружением инструмента в масло рекомендуется произвести его подстуживание до температур 900 - 1000°. Обычно инструмент охлаждают в масле до температур 150 - 200°, а затем - на спокойном воздухе. Температуру инструмента при извлечении его из масла можно определить по внешним признакам: если масло на поверхности инструмента слегка дымится, значит он имеет температуру 200°; если же масло дымится сильно, это значит, что температура инструмента превышает 200° и его нужно снова погрузить в масло. Необходимую твердость и красностойкость инструмента из быстрорежущей стали можно получить и при охлаждении его на воздухе. Однако, как показывает практика, режущие свойства инструмента в этом случае хуже, чем при закалке в масле.

Хорошие результаты в смысле уменьшения деформации инструмента дает ступенчатая закалка. При этом способе обработки изделия охлаждают в течение 10-20 мин. в селитровой ванне, нагретой до температур 450 - 550°, и затем окончательно охлаждают в масле или на спокойном воздухе. Этот способ применяют для инструментов небольших сечений, а также сложной формы. На рижском заводе «Автоэлектроприбор» резцы и дисковые фрезы из стали Р18 подвергались термической обработке по следующему режиму: нагревались до температуры 1270°, охлаждались 10-15 мин. в селитровой ванне при температуре 530° и затем на воздухе после закалки применялся двукратный отпуск. В результате указанной обработки твердость инструмента составляла HR = 62 - 66. Как резцы, так и дисковые фрезы показали большую стойкость в работе.

Применяется также изотермическая закалка инструментов из быстрорежущей стали. При этом изделия охлаждаются в течение 20 - 60 мин. в соляной ванне температурой 200 - 300° и затем на воздухе. После закалки структура быстрорежущей стали содержит около 50% легированного мартенсита, 30 - 40% легированного остаточного аустенита и некоторое количество карбидов, которые при нагреве не перешли в аустенит. Твердость быстрорежущей стали после правильной закалки должна быть Нд = 60 - 63. Более высокая твердость чаще всего является результатом недогрева инструмента при закалке. Для проверки этого инструмент подвергают дополнительному отпуску при температуре 560°. Если действительно имел место недогрев, то твердость инструмента после отпуска значительно снизится.

– Конец работы –

Эта тема принадлежит разделу:

Вопрос 1. (Закономерности формирования структуры материала)

ЛЕКЦИИ смотреть... Влияние легирующих элементов на равновесную структуру сталей Критические... В современном машино и приборо строении широкое применение находят стали в которых помимо железа угле рода и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Вопрос 1. (Закономерности формирования структуры материала)
1) Понятие «структура материала». Атомно-кристаллическая структура материалов. Аморфные и кристаллические материалы. Элементарная ячейка и её характеристики.  

Типы кристаллов и их свойства. Металлические и ионные кристаллы. Ковалентные и молекулярные кристаллы. Полиморфизм кристаллических тел.
Большинство твердых тел находится в кристаллическом состоянии, которое характеризуется дальним порядком, то есть трехмерной периодичностью структуры по всему объему твердого тела (кристаллической р

Формирование структуры литых материалов. Первичная кристаллизация. Кривые охлаждения, критический размер зародыша. Ликвация.
Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кри­сталлизацией.

Формирование структуры литых материалов. Форма и размер кристаллов. Модифицирование. Аморфное состояние материала.
  Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кри­сталлизацией. Образов

Формирование структуры литых материалов. Размер кристаллов при литье и способы их измельчения.
Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кри­сталлизацией. Образование новых крист

Пластическая деформация монокристаллов и поликристаллов. Изменение структуры и свойств при пластической деформации.
На начальной стадии пластической деформации монокристалла осуществляется движением дислокаций по одной системе плоскостей – стадия легкого скольжения. Дислокации н

Влияние нагрева на структуру и свойства пластически деформированного металла. Текстура деформации.
Текстура деформации. При большой степени деформации возникает преимущественная ориентация кристаллографических плоскостей и направлений в

Правило отрезков или правило рычага
В процессе кристаллизации изменяются концентрация компонента в фазах и количество фаз. Для их определения служит правило фаз. Рассмотрим процесс кристаллизации произвольного сплава (рис.6.

Правило отрезков или правило рычага
В процессе кристаллизации изменяются концентрация компонента в фазах и количество фаз. Для их определения служит правило фаз. Рассмотрим процесс кристаллизации произвольного сплава (рис.6.

Диаграмма состояния железоуглеродистых сплавов. Компоненты диаграммы, изотермические превращения.
Диаграмма железоуглеродистых сплавов может быть представлена в двух вариантах: метастабильном, отражающем превращения в системе “железо-карбид железа”, и стабильном, отражающем превращения в систем

Термическая обработка сплавов, не имеющих превращений в твердом состоянии.
Термическую обработку применяют для снижения остаточных напряжений в изделиях, рекристаллизации деформированных полуфабрикатов, уменьшения внутрикристаллической ликвидации в слитках или отливках. С

Изменение механических свойств сплава в зависимости от температуры и времени старения.
В наиболее общем случае предел прочности, предел текучести и твердость сплава с увеличением продолжительности старения возрастают, достигают максимума и затем снижаются (смотрите кривые Т2

Типы выделений при старении (структура свойства).
Основные структурные изменения при старении сводятся к фазным этапам распада пересыщенного твердого раствора, полученного в результате закалки сплава. Так как распад пересыщенного раствора

Типы выделений
В зависимости от строения поверхности раздела между выделением и матрицей различают три типа выделений: полностью когерентные, частично когерентные и некогерентные. Схе

Природно-мелкозернистые стали.
Природно-мелкозернистыми называют стали, в которых при нагреве до 1000-1100 °С кристаллы аустенита растут с малой скоростью; к таковым относятся стали, дополнительно раскислявшиеся алюминием, а так

Закономерности формирования структуры стали при перлитном превращении.
Перлитное превращение - эвтектоидное превращение (распад) аустенита, происходящее ниже 727°С (по другим источникам 723°С) и заключающееся в одновременном зарождении и росте внутри аустенита (ɣ

Закономерности формирования структуры стали при мартенситном превращении.
МАРТЕНСИТ– структура сплавов, возникающая при их термической обработке при быстром охлаждении. В железоуглеродистых сплавах (сталях и чугунах) мартенсит возникает при содержании уг

Отпуск стали. Виды отпуска. Изменение структуры и свойств стали при отпуске.
Отпуском называется операция термической обработки, состоящая в нагреве закаленной стали до температуры ниже критической АC1, выдержке при этой температуре и последующем медленном или быстром охлаж

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги