рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Алюминий

Алюминий - раздел Химия, ХИМИЯ   Алюминий – Типичный Амфотерный Элемент, Для Него Наиболее Тип...

 

Алюминий – типичный амфотерный элемент, для него наиболее типична степень окисления +3. В отличие от бора для него характерны не только анионные, но и катионные комплексы.

По распространенности на Земле алюминий занимает третье место (после О, Si), и является самым распространенным из металлов. Важные минералы для получения алюминия – боксит Al2O3nН2О, корунд Al2O3. В алюмосиликатах сосредоточена основная масса алюминия земной коры; так, распространенным продуктом разрушения горных пород является каолин, состоящий в основном из глинистого минерала каолинита Al2O3∙2SiO2∙2Н2О. Промышленное значение имеет минерал криолит Na3AlF6. Из алюмосиликатов наиболее распространены полевые шпаты. Главные их представители: ортоклаз K[AlSi3O8], альбит Nа[AlSi3O8] и анортит Са[Al2Si3O8]. Очень распространены минералы группы слюд, например, мусковит КАl2[АlSi8O10(ОН)2]. Большое практическое значение имеет минерал нефелин (Nа,К)2[Al2Si3O8].

Простое вещество. Al (алюминий) – серебристо-белый, легкий, пластичный металл. Пассивируется в воде, концентрированной азотной кислоте и растворе дихромата калия из-за образования устойчивой оксидной пленки; амальгамированный металл реагирует с водой. Реакционноспособный, сильный восстановитель. Проявляет амфотерные свойства, реагирует с разбавленными кислотами и щелочами, неметаллами.

2(Al, Hg) + 6H2O = 2Al(OH)3↓ + 3H2↑ + 2Hg↓

2Al + 6HCl(разб.) = 2AlCl3 + 3H2

8Al + 30HNO3(разб.) = 8Al(NO3)3 + 3N2O↑ + 15H2O

2Al + 2NaOH∙H2O (400-500° C) = 2NaAlO2 + 3H2

2Al + 2NaOH(конц.) + H2O(гор.) = 2Na[Al(OH)4] + 3H2

4Al(порошок) + 3O2 = 2Al2O3

2Al(порошок) + 3Hal2 = 2AlHal3

Получение и применение. В промышленности алюминий получают электролизом глинозема Al2O3 в расплавленном криолите Na3AlF6. Катодом служит корпус электролизера, на котором выделяется жидкий алюминий (т. пл. 660°С), на графитовом аноде выделяется кислород, который окисляет графит до оксидов углерода и по мере сгорания анода его наращивают. Поскольку жидкий алюминий имеет более высокую плотность, чем расплав, он собирается на дне электро­лизера.

По применению алюминий занимает одно из первых мест среди металлов. Это обусловлено его невысокой плотностью, высокой прочностью, способностью пассироваться. Из алюминия изготавливаются химическая аппаратура, электрические провода, конденсаторы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

Алюминий активно восстанавливает многие металлы из оксидов – метод алюмотермии и применяется в производстве марганца, хрома, ванадия, вольфрама, ферросплавов.

Основную массу алюминия используют для получения легких сплавов – дуралюмина (94% Аl, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумина (85-90% Аl, 10-14% Si, 0,1% Na) и др. Сплавы алюминия широко применяются в автомобилестроении, судостроении, авиационной технике и пр.

Алюминий применяется как легирующая добавка ко многим сплавам для придания им жаростойкости. Соединения алюминия с d-элементами – алюминиды (NiAl, Ni3Al, CoAl, Ti3Al, TiAl и др.) и их сплавы используются в качестве жаропрочных материалов.

Нефелин (Nа,К)2[Al2Si3O8] в комплексе с известняком СаСО3 используется для получения глинозема Al2O3, содовых продуктов (поташ K2CO3) и цемента (CaSiO3).

Из солей алюминия широкое применение имеют его сульфат и квасцы, используемые в бумажной промышленности для проклейки бумаги, в кожевенной – для дубления кожи, в тек­стильной – при крашении тканей и т. д.

Соединения алюминия (III). Бинарные соединения AlF3, AlCl3, Al2O3, Al2S3, AlH3 в обычных условиях полимерны и представляют собой твердые веще­ства белого цвета.

Оксид алюминия Al2O3 получают термическим разложением квасцов или гидроксида алюминия.

2NH4Al(SO4)2 = Al2O3 + 2NH3 + 4SO3 + H2O

2Al(OH)3 = Al2O3 + 3H2O

Гидроксид алюминия Аl(ОН)3 – амфотерное соединение; свежеполу­ченный продукт легко растворяется и в кислотах, и в щелочах. При этом разрушается высокомолекулярный гидроксид. В зависимости от среды образуются комплексные либо катионы, либо анионы:

Al(OH)3 + 3NaOH = Na3[Al(OH)6]

Al(OH)3 + 3HCl + 3H2O = [Al(H2O)6]Cl3

Из кислых растворов выделяются кристаллогидраты соответству­ющих солей алюминия. Например, AlCl3∙6H2O, Al(NO3)3∙9H2O, M+1Al(SO4)3∙10H2O, (квасцы). Соли алюминия и кис­лородсодержащих кислот растворимы в воде; нерастворим AlPO4.

В растворах соли алюминия гидролизуются. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается.

Алюминий образует полимерный гидрид (алан) AlH3, который полу­чают косвенным путем, например, действием AlCl3 на эфирные растворы гидридоалюминатов:

3Li[AlH4] + AlCl3 = 4AlH3 + 3LiCl

Для алюминия, как и для бора, известны соединения, которые по структу­ре аналогичны соответствующим соединениям углерода. Например: H3N–AlH3 (алазан), H2N=AlH2 (алазен), HN≡AlH (алазин).

 

Подгруппа галлия (галлий, индий, таллий)

Для галлия наиболее характерна степень окисления +3, для таллия +1, индий чаще всего проявляет степень окисления +3.

Ga, In и Тl являются рассеянными элементами и входят в состав некоторых по­лиметаллических руд. Галлий часто сопутствует алю­минию. Очень редко встречаются самостоятельные руды – галлит CuGaS2, рокезит CuInS2, индит FeInS3, лорандит TlAsS2, крукезит (Tl,Cu,Au)2Se.

Соединения галлия, индия и таллия ядовиты.

Простые вещества. Ga (галлий) – серебристо-белый с голубоватым оттенком, очень мягкий, пластичный металл. В твердом и жидком состоянии образован молекулами Ga2, газ – одноатомный. Пассивируется в холодной воде (образуется устойчивая оксидная пленка). Сильный восстановитель; реагирует с горячей водой, сильными кислотами, щелочами, гидратом аммиака, неметаллами.

2Ga + 3Cl2 = 2GaCl3

2Ga + 3S = Ga2S3

2Ga + 6H2O(гор.) = 2Ga(OH)3↓ + 3H2

2Ga + 6HCl(разб.) = 2GaCl3 + 3H2

Ga + 6HNO3(конц.) = 2Ga(NO3)3 + 3NO2↑ + 3H2O

2Ga + 2NaOH(конц., гор.) = 2Na[Ga(OH)4] + 3H2

In (индий) – серебристо-белый, очень мягкий, пластичный, легкоплавкий металл. Не изменяется во влажном воздухе. Не реагирует в водой, щелочами, гидратом аммиака. Восстановитель; окисляется кислотами, кислородом, другими неметаллами.

Tl (таллий) – серебристо-белый, очень мягкий, пластичный, легкоплавкий металл. На воздухе покрывается оксидной пленкой. В компактном виде не реагирует с водой, хлороводородной кислотой, щелочами, гидратом аммиака. Окисляется серной и азотной кислотами, пероксидом водорода, хлором.

2Tl + H2SO4(разб., хол.) = Tl2SO4↓ + 3H2

3Tl + 4HNO3(разб., гор.) = 3TlNO3 + NO↑ + 2H2O

Tl + 6HNO3(конц., гор.) = Tl(NO3)3 + 3NO2↑ + 3H2O

4Tl + 2O2 = Tl2O + Tl2O3

2Tl + 3H2O2(конц.) = Tl2O3↓ + 3H2O

Получение и применение.Основным источником промышленного получения галлия являются продукты переработки боксита, нефелина. Соединения галлия извле­кают также совместно с соединениями германия из продуктов сгора­ния углей (пылевые отходы, зола), попутно получают при производст­ве свинца и цинка вместе с другими редкими металлами. Галлий и его аналоги получают при довольно слож­ной химической переработки полиметаллических руд. После много­кратной переработки и очистки из руд выделяют их оксиды или хлориды; последние химическим или электрохимическим способом восстанавливают до металлов.

Галлий и его аналоги легко сплавляются со многими металлами, при этом часто образуются эвтектические сплавы с низкими темпера­турами плавления. Индий применяется для изготовления зеркал и в качестве электролитических покрытий для защиты других метал­лов от коррозии. Жидкий галлий весьма склонен к переохлаждению и долго не застывает, что позволяет использовать его в термометрах для измерения высоких температур (температурный интервал жидкого состояния от 29,8 до 2250°С).

Соединения галлия (III), индия (III) и таллия (III).Непосредственным взаимодействием простых веществ могут образо­ваться Ga2O3 и In2O3, а Тl2О3 образуется косвенным путем из соединений Тl (III) и окислением Тl2O озоном. В воде оксиды практически нерастворимы. В соответствии с усилениемоснóвных свойств в ряду Ga2О3–In2O3–Тl2О3 возрастает раство­римость в кислотах.

Э2О3 + 6НCl(разб.) = 2ЭСl3 + 3Н2О

Ga(OH)3 проявляет оснóвные и кислотные свойства примерно в одинаковой степени; у In(ОН)3 основные свойства преобладают над кислотными, а у Tl(ОН)3 кислотная функция практически не проявляется. Гидроксиды Э(ОН)3 получают аналогично Al(ОН)3.

При растворении Э(ОН)3 и Э2О3 в кислотах образуются аквакомплексы, так:

Ga(OH)3 + 3HCl + 3H2O = [Ga(H2O)6]Cl3

Поэтому соединения Ga (III), In (III) и Тl (III) из водных растворов всегда выделяются в виде кристаллогидратов, например ЭНаl3∙6Н2О, KЭ(SО4)2∙12H2О (квасцы).

Характер растворимости и гидролиза соединений Ga (III) и In (III) в общем такой же, как и соответствующих соединений алюминия.

Гидроксид галлия Ga(OH)3, как и Al(ОН)3, растворяется в присут­ствии щелочей:

Ga(OH)3 + 3NaOH = Na3[Ga(OH)6]

Из растворов обычно выделяются производные, отвечающие составу M2+1[Ga2О(OH)6], M3+2[Ga(OH)6]2. При сплавлении оксидов Э2О3 с основными оксидами образуются оксосоединения типа МЭО2.

Галогениды элементов подгруппы галлия ЭНаl3 (во многом напоминают АlНаl3) – кислотные соединения; с оснóвными галогенидами образуют комплексные галогениды типа М3+1[ЭНаl6] и М+1[ЭНаl4]:

3КF + GaF3 = К3[GaF6]

Для галлия (III) наиболее характерны фторокомплексы. Индий (III) и таллий (III) образуют устойчивые комп­лексы с хлором, бромом.

Гидриды галлия и индия ЭН3, подобно А1Н3, полимерны и являются кислотными соединениями.

Исключительно важны как полупроводниковые соединения пиктогениды типа АIIIВV (где АIII – элемент подгруппы галлия, ВV – элемент VА-группы). Например, GaAs, InSb, TlBi.

Соединения галлия (I), индия (I) и таллия (I).Для таллия (I) известны многочисленные соединения, произ­водные же галлия (I) и индия (I) неустойчивы и являются сильными восстановителями.

По химическим свойствам соединения таллия (I) оснóвные. Боль­шинство соединений Tl (I) в воде растворяется; нерастворимы TlCl, TlBr, ТI, Tl2S.

Таллий (I) проявляет сходство с щелочными металлами и серебром.

Тl2O + Н2O = 2ТlOН

ТlOН (желтого цвета) – сильное основание, но в отличие от NaOH, RbOH отщепляет воду при нагревании (100°С): 2ТlOН = Tl2O + Н2O

Для таллия (I) комплексообразование не характерно; обычно он не образует и кристаллогидратов. Соединения таллия (I) обладают свето­чувствительностью, т. е. при освещении разлагаются. Действием силь­ных окислителей производные таллия (I) можно перевести в соедине­ния таллия (III).


Подгруппа скандия (скандий, иттрий, лан­тан, актиний)

 

Скандий и его аналоги проявляют постоянную степень окисления +3. Скандий напоминает алюминий и является амфотерным элементом, а его аналоги по свойствам приближаются к щелочно-земельным металлам.

В земной коре элементы подгруппы скандия очень распылены. Скандий образует минералы стереттит ScPO4∙2H2O, тортвейстит Sc2Si2O7, встречающие крайне редко. Кроме того, скандий содержится в касситеритах SnO2, вольфрамитах, урановых рудах и др. Лантан содержится в монаците (Ce, La, Nb, …)РО4, иттрий – в ксенотиме (Y, Eu, Cd, …)РО4 и др. минералах.

Простые вещества. Скандий и его аналоги по химической активности уступают лишь щелочным и щелочно-земельным металлам.

Sc (скандий) – серебристо-белый с желтым оттенком, мягкий металл. На воздухе покрывается оксидной пленкой. Не реагирует с холодной водой, щелочами. Сильный восстановитель; реагирует с горячей водой, разбавленными кислотами, при нагревании – с кислородом, хлором, серой, азотом.

4Sc + 3O2 = 2Sc2O3

2Sc + 3Cl2 = 2ScCl3

2Sc + 6H2O(гор.) = 2Sc(OH)3↓ + 3H2

2Sc + 6HCl(разб.) = 2ScCl3↓ + 3H2

8Sc + 30HNO3(разб.) = 8Sc(NО3)3 + 3NH43 + 9Н2О

Y (иттрий) и La (лантан) – серебристо-белые, мягкие металлы. Во влажном воздухе покрываются оксидной пленкой. Пассивируются в холодной воде; не реагируют со щелочами. Сильные восстановители; реагируют с горячей водой, разбавленными кислотами, при нагревании – с кислородом, хлором, серой, азотом.

Ac (актиний) – серебристо-белый, тяжелый, мягкий, радиоактивный металл. Во влажном воздухе покрывается оксидной пленкой. Сильный восстановитель; реагирует с водой, кислотами.

Получение и применение.В свободном состоянии Sc, Y и La получают электролизом расплавленных хлоридов или металлотермическим методом. Актиний синтезируют бомбардировкой нейтронами радия в ядерных реакторах и выделенный в виде AcF3 восстанавливают литием.

Соединения элементов подгруппы скандия применяют в полупро­водниковой технике.

Соединения скандия (III), иттрия (III), лантана (III), актиния (III).В воде растворяются нитраты, сульфаты, галогениды (кроме ЭF3), малорастворимы гидроксиды, карбонаты, фосфаты, фториды, силикаты. Из водных растворов выделяются кристаллогидраты с переменным числом молекул воды, например: Sc2(SО4)3∙5Н2О, ЭНаl3∙6Н2О.

Оксиды Э2O3, взаимодействуя с водой, образуют характеристические гидроксиды Э(ОН)3.

Sc2О3 + 3H2О = 2Sc(OH)3↓ или ScO(OH)

La2О3 + 3H2О = 2La(OH)3

В ряду гидроксидов Sc(OH)3–Y(OH)3–La(OH)3–Ac(OH)3 усиливаются оснóвные признаки и возрастает растворимость в воде. Так, Sc(OH)3 амфотерен, а La(ОН)3 – довольно сильное основание. В обычных условиях он взаимодействует с кислотами, поглощает СО2, из аммонийных соединений при нагревании вытесняет аммиак. При на­гревании Sc2О3 или Sc(OH)3 с оснóвными оксидами или щелочами +1 образуются оксоскандиаты (III) M+1ScО2, а в растворах образуются гидроксоскандиаты:

3NaOH + Sc(OH)3 = Na3[Sc(OH)6]

При взаимодействии гидроксида с кислотами образуются соли:

2Sc(OH)3 + 3H24 = Sc2(SО4)3 + 6H2О

С малоактивными неметаллами скандий и его аналоги образуют тугоплав­кие соединения типа интерметаллических, например, ScB2, YB2, LaB6, ЭSi2, YС2, LaC2, ScC.

Cкандий и его аналоги по свойствам напоминают s-элементы, т.е. являются переходными между s- и d-элементами больших периодов.


– Конец работы –

Эта тема принадлежит разделу:

ХИМИЯ

кафедра Современное естествознание... В М Васюков О В Савенко А В Иванова...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Алюминий

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Часть I. ТЕОРЕТИЧЕСКАЯ ХИМИЯ
Глава 1. Основные понятия и законы химии................................................................................... 3 Глава 2. Строение атома и периодический закон.................

Часть II. НЕОРГАНИЧЕСКАЯ ХИМИЯ
  Глава 11. Важнейшие классы неорганических соединений...................................................... 55 Глава 12. Элементы I группы (водород, литий, натрий, подгруппа

Часть III. ОРГАНИЧЕСКАЯ ХИМИЯ
  Глава 20. Общая характеристика органических соединений..................................................... 124 Глава 21. Алканы............................................

Основные положения атомно-молекулярной тео­рии
  1. Все вещества состоят из молекул. Молекула – наименьшая частица вещества, обладающая его химическими свойствами. 2. Молекулы состоят из атомов. Атом – наименьшая частица

Закон эквивалентов – для молекулярных соединений количество составляющих элементов пропорционально их химическим эквивалентам.
Эквивалент (Э)– частица ве­щества, которая в данной кислотно-основной реакции эк­вивалентна одному иону водорода или в данной окислитель­но-восстановительной реакции одно

Газовые законы
  Изучение свойств газообразных веществ и химических реакций с участием газов сыграло настолько важную роль в становлении атомно-молекулярной теории, что газовые законы заслуживают сп

Закон Шарля: при постоянном объеме давление газа изменяется прямо пропорционально абсолютной температуре.
Р1 / Т1 = Р2 / Т2, или Р/Т = const. Эти три закона можно объединить в один универсальный газовый зако

Модели строения атома
Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью (А. Беккерель, 1896 г.). Последовав­шее за этим

Квантовые числа электронов
  Главное квантовое число п определяет общую энергию электрона на данной орбитали (п = 1, 2, 3, ...). Главное квантовое число для атомов изве

Электронные конфигурации атомов
  Так как при химических реакциях ядра реагирующих атомов ос­таются без изменения (за исключением радиоактивных превраще­ний), то химические свойства атомов зависят от строения их эле

Принцип Паули или за­прет Паули (1925 г.): в атоме не может быть двух электронов, обла­дающих одинаковыми свойствами.
Поскольку свойства электронов характеризуются квантовыми числами, принцип Паули часто формулируется так: в атоме не может быть двух электронов, у которых все четы­ре квантовых числа были бы один

Ядро атома и радиоактивные превращения
  Наряду с хи­мическими реакциями, в которых принимают участие только элек­троны, существуют различные превращения, в которых изменению подвергаются ядра атомов (ядерные реакции).

Периодический закон
Открытый в 1869 г. Д.И. Менделеевым Периодический закон представляет собой один из фундаментальных законов в современном естествознании. Расположив все элементы в порядке возрастания атомных масс Д

Валентность и степень окисления
Способность атома химического элемента присоединять или замещать определенное число атомов другого элемента с образованием химической связи называется валентностью элемента.

Ковалентная связь – связь, осуществляемая за счет образования электронных пар, в одинаковой мере принадлежащих обоим ато­мам.
Н·+ ·Н® Н : Н или Н – Н    

Связью называют связь, возникающую при обобществле­нии электронных облаков двух атомов, если облака перекрываются по линии, соединяющей атомы.
Но в молекуле ацетилена в каждом из атомов углерода содер­жится еще по два р-электрона, которые не принимают участия в образовании σ-связей. Молекула ацетилена имеет плоский лине

Связью можно назвать ковалентную связь, образованную при перекрывании атомных орбиталей вне линии, со­единяющей атомы.
σ-связи являются более прочными, чем π-связи, чем объясняется большая реакционная способность непредельных углеводородов по сравне­нию с предельными. Еще один вид г

Ионная связь
  Ионная связь – электростатическое притяжение между иона­ми, образованными путем полного смещения электронной пары к од­ному из атомов. Na+

Металлическая связь
  Металлы объединяют свойства, имеющие общий характер и от­личающиеся от свойств других веществ. Такими свойствами явля­ются сравнительно высокие температуры плавления, способность к

Межмолекулярные взаимодействия
  Электрически нейтральные атомы и молекулы способны к дополнительному взаимодействию друг с другом. Водородная связь – связь между положительно з

Единицы измерения температуры Т, давления р и объема V.
При измерении температуры чаще всего используются две шкалы. Абсолютная шкала температур использует в качестве единицы из­мерения кельвин (К). В абсолютной шкале нулевая точка (0 К) н

Химическая термодинамика
Химическая термодинамика отвечает на вопросы о принципиальной возможности протекания данной химической реакции в определенных условиях и о конечном равновесном состоянии системы

Реакции, в результате которых энтальпия возрастает (ΔН > 0) и система поглощает теплоту извне (Qp < 0) называются эндо­термическими.
Так, окисление глюкозы кислородом происходит с выделением большого количества теплоты (Qp = 2800 кДж/моль), т.е. этот про­цесс – экзотермический. Соответствующее термохимическое у

Скорость химической реакции определяется количеством веще­ства, прореагировавшего в единицу времени в единице объема.
v = ∆С / ∆τ моль/(л·с) Скорость реакции зависит от природы реагирующих веществ и от условий, в которых реакция протекает. Важнейшими из них яв­ляются

Обратимые и необратимые реакции. Состояние химического равновесия
  Химическая реакция не всегда «доходит до конца», т.е. исходные вещества не всегда полностью превращаются в про­дукты реакции. Это происходит потому, что по мере накопления продуктов

Состояние, в котором скорость обратной реакции становится равной скорости прямой реакции, называется химическим равнове­сием.
Состояние химического равновесия обратимых процессов коли­чественно характеризуется константой равновесия. Так для обратимой химической реакции: aА + bВ

Идеальные и реальные растворы. Растворение как физико-химический процесс
  Известны две основные теории растворов: физическая и химиче­ская. Физическая теория растворов предложена Вант-Гоффом и Аррениусом. Со­гласно этой теории, растворител

Зависимость растворимости различных веществ от природы растворителя, температуры и давления
  Рас­творимость веществ в различных растворителях, например в воде, ко­леблется в широких пределах. Если в 100 г воды при комнатной температуре растворяется более 10 г веще

Законы разбавленных растворов
  При растворении в растворителе нелетучего вещества давление пара растворителя над раствором уменьшается, что вызывает повышение температуры кипе­ния раствора и понижение температуры

Способы выражения концентрации (состава) растворов
  Количественный состав раствора чаще всего выражается с по­мощью понятия «концентрации», т.е. содер­жание растворенного вещества в едини­це массы или объема. 1. 1.

Электролиты и электролитическая диссоциация
Растворы, проводящие элек­трический ток, называются растворами электролитов.Существуют две основные причины прохождения электрического тока через проводники: либо за счет перен

Оптические и молекулярно-кинетические свойства дисперсных систем
Оптическое свойство коллоидных систем – опалесценция, т.е. рассеивание света малыми частицами, приводящее, в частности, к возникновению эффекта Фарадея-Тиндал

Поверхностные и адсорбционные явления
Различия состава и строения соприкасающихся фаз, а также характера молекулярных взаимодействий в их объеме обуславливают возникновение своеобразного молекулярного силового поля на поверхности разде

Коллоидные (коллоидно-дисперсные) системы
Коллоидные системы (золи) – это гетерогенные системы, состоящие из частиц размером порядка 10–7–10–9 м. По размеру частиц коллоидные системы занимают п

Окислительно-восстановительные реакции –реакции, сопровождающиеся изменением степени окис­ления элементов, входящих в состав реагирующих веществ.
Степень окисления – условный заряд атома в молекуле, вычисленный из предположения, что молекула состоит из ионов и в целом электронейтральна. Вещество, в состав

Химические источники электрической энергии. Электродные потенциалы
Электрохимическую реакцию окисления-восстановления можно провести так, что электроны будут переходить от восстановителя к окислителю в виде электрического тока, т.е. будет происходить превращение х

Коррозия металлов
Коррозия – разрушение металлов в результате химического или электрохимического воздействия окружающей среды. Коррозия – самопроизвольный процесс, протекающий с уменьшением с

Электролиз
  Электролиз – окислительно-восстановительный процесс, протекающий на электродах при пропускании по­стоянного электрического тока через раствор или расплав электроли

Электролиз расплавов электролитов
Схема записи электролиза расплава электролита: KtAn ↔ Ktn+ + Anm– Катод– | Ktn+

Электролиз водных растворов электролитов
Электролиз растворов отличается от электролиза расплавов электролитов наличием молекул воды, которые также могут участвовать в окислительно-восстановительных реакциях электролиза. Вследствие своей

Восстанавливается вода Восстанавливается вода и катионы металла Восстанавливается катионы металла
Анодный процесс: 1. На нерастворимых анодах при конкуренции аниона бескислородных кислот (Cl–, Br–, I–, S2–

Качественный анализ
Задача качественного анализа –определение химического состава исследуемого соединения. Качественный анализ проводят химическими, физическими и физико-химическим

Количественный анализ
  Задача количественного анализа– определение количественного содержания химических элементов (или их групп) в соединениях. Методы количественного ана

Кислоты
  Кислотой называется соединение, образующее при диссоциации в водном растворе из положительных ионов только ионы водорода Н+(по теории электролитич

Водород
Водород – первый элемент и один из двух представителей I периода Периодической системы. Атом водорода состоит из двух частиц – протона и электрона, между которыми существуют лишь силы притяжения. В

Бериллий
  Во всех устойчивых соединениях степень окисления бериллия +2. Содержание бериллия в земной коре невелико. Важнейшие минералы: берилл Be3Al2(SiO

Лантаноиды
В семейство лантаноидов входят церий Се 4f25s25p65d06s2, празеодим Pr 4f3, неодим Nd 4f4, прометий

Актиноиды
  В семейство актиноидов входят торий Th 5f0­­6s26p66d27s2, протактиний Pr 5f2 6d17s2

Углерод
  В большинстве неорганических соединений углерод проявляет степени окисления –4, +4, +2. В природе содержание углерода составляет 0,15% (мол. доли) и находится в основном в

Кремний
  Кремний в соединениях имеет степени окисле­ния +4 и –4. Для него наиболее характерны связи Si–F и Si–О. По распространенности на Земле 20% (мол. долей) кремний уступа­ет то

Кислород
  Подобно фтору, кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). Степень окисления кис­лорода в подавляющем большинстве соединений равна –2. Кром

Формулы органических соединений
  Молекулярная формула отражает качественный и количественный элементный состав вещества. В молекулярной формуле сначала пишут атомы уг­лерода, затем - атомы водорода, затем -

Номенклатура органических соединений
В настоящее время признана системати­ческая номенклатура ИЮПАК (IUРАС – Международный союз теоретической и прикладной химии). Среди вариантов

Изомерия органических соединений
Изомерия – существование разных веществ с одинаковой молекулярной формулой. Данное явление обусловлено тем, что одни и те же атомы могут по-разному соединят

И реакционная способность органических соединений
Химические свойства атомов, входящих в молекулы, меняются в зависимости от того, с какими другими ато­мами они связаны. Наиболее сильно влияют друг на дру­га непосредственно связанные атомы, однако

Общая характеристика органических реакций
В основу классификации органических реакций мо­гут быть положены различные принципы. I. Классификация химических реакций по резуль­тату химического превращения: 1.

Промышленное производство органических соединений
Возрастающая роль органических соединений в современном мире вызывает потребность в создании промышленного производ­ства, способного производить их в достаточном количестве. Для такого производства

Номенклатура и изомерия
Алканы являются насыщенными, или предельными, углеводоро­дами, поскольку все свободные валентности атомов углерода заняты (полностью «насыщены») атомами водорода. Простейшим пр

Физические свойства
В обычных условиях первые четыре чле­на гомологического ряда алканов (C1 – С4) – газы. Нормальные алканы от пентана до гептадекана (C5 – С17 ) – жидкости

Способы получения
Основные природные источники алканов – нефть и природный газ. Различные фракции нефти содержат алканы от C5H12 до С30Н62. Природный газ состоит из ме­тан

Химические свойства
В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимо­действуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными ще

Номенклатура и изомерия
Циклоалканы – это предельные циклические углеводороды. Простейшие представители этого ряда: Обща

Химические свойства
Похимическим свойствам малые и обычные циклы существенно различаются между собою. Циклопро­пан и циклобутан склонны к реакциям присоединения, т.е. сходны в этом отношении с алкенами. Циклопентан и

Номенклатура и изомерия
Алкенами называют непредельные углеводороды, молекулы ко­торых содержат одну двойную связь. Первый представитель этого класса – этилен СН2=СН2,

Получение
В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органическо­го синтеза, разработаны многие способы их получения. 1. Основным промышленным исто

Химические свойства
Химические свойства алкенов определяются наличием в их мо­лекулах двойной связи. Электронная плотность π-связи достаточно подвижна и легко вступает в реакции с электрофильными

Применение
Низшие алкены – важные исходные вещества для промышленного органического синтеза. Из этилена получают эти­ловый спирт, полиэтилен, полистирол. Пропен используют для син­теза полипропилена, фенола,

Номенклатура и изомерия
Алкадиены – непредельные углеводороды, содержащие две двойные связи. Общая формула алкадиенов СnН2n-2. Если двойные связи разделены в углеродной цеп

Получение
Основной промышленный способ получения диенов – дегидрирование алканов. Бутадиен-1,3 (дивинил) получают из бу­тана:

Химические свойства
Для алкадиенов характерны обычные ре­акции электрофилъного присоединения АЕ, свойственные алкенам. Особенность сопряженных диенов состоит в том, что две двойные связи в их

Номенклатура и изомерия
Алкинами называют непредельные углеводороды, молекулы которых содержат одну тройную связь. Общая формула гомологического ряда алкинов СnН2

Физические свойства
Физические свойства алкинов похожи на свойства алканов и алкенов. При обычных условиях (С2 – С4) – газы, (C5 – C16) – жидкости, начиная с С17

Получение
1. Общий способ получения алкинов – отщепление двух моле­кул галогеноводорода от дигалогеналканов, которые содержат два атома галогена либо у соседних, либо у одного атома углерода, под

Химические свойства
Химические свойства алкинов обусловлены наличием в их моле­кулах тройной связи. Типичными реакциями для ацетилена и его гомологов являются реакции электрофильного присоединения АE

Применение
На основе ацетилена развились многие отрасли промышленности органического синтеза. Выше уже отмечена воз­можность получения уксусного альдегида из ацетилена и различных кетонов из гомологов ацетиле

Номенклатура и изомерия
Ароматическими углеводородами (аренами) называют вещества, в молекулах которых содержится одно или несколько бензольных колец – циклических групп атомов углерода с ос

Физические свойства
Первые члены гомологического ряда бензола – бесцветные жидкости со специфическим запахом. Они легче воды и в ней не растворимы. Хорошо растворяются в органи­ческих растворителях и сами являются хор

Способы получения
1. Получение из алифатических углеводо­родов. Для получения бензола и его гомологов в промышленности используют ароматизацию предельных углеводородов, входящих в состав нефти. При про

Химические свойства
Ароматическое ядро, обладающее под­вижной системой π-электронов, является удобным объектом для атаки электрофильными реагентами. Этому способствует также про­странственное расположение π-

Правила ориентации (замещения) в бензольном кольце
Важнейшим фактором, определяющим химические свойства мо­лекулы, является распределение в ней электронной плотности. Ха­рактер распределения зависит от взаимного влияния атомов. В молекулах

Применение
Ароматические углеводороды – важнейшее сырье для синтеза ценных веществ. Из бензола получают фенол, анилин, стирол, из которых, в свою очередь, получают фенолформальдегидные смолы, красители, полис

Номенклатура и изомерия
Общая формула гомологического ряда предельных одноатомных спиртов – CnH2n+1OH. В зависимости от того, при каком углерод­ном атоме находится гидроксильная гру

Получение
1. Общий способ получения спиртов, имеющий промышленное значение, – гидратация алкенов. Реакция идет при пропускании алкена с парами воды над фосфорнокислым катализа­тором (H3PO

Химические свойства
Химические свойства спиртов определяются присутствием в их молекулах группы -ОН. Связи С–О и О–Н сильно полярны и способны к разрыву. Различают два основных типа реак­ций спиртов с участие

Реакции с разрывом связи О–Н.
1. Кислотные свойства спиртов выражены очень слабо. Низшие спирты бурно реагируют со щелочными металлами:

Реакции с разрывом связи С–О.
1) Реакции дегидратации протекают при нагревании спиртов с водоотнимающими веществами. При сильном нагревании происхо­дит внутримолекулярная дегидратация с образованием алкенов:

Применение
Спирты главным образом используют в промыш­ленности органического синтеза. Метиловый спиртСН3ОН – ядовитая жидкость температурой кипения 65°С, легко смешивается

Химические свойства
Для двух- и трехатомных спиртов харак­терны основные реакции одноатомных спиртов. В реакциях могут участвовать одна или две гидроксильные группы. Взаимное влияние гидроксильных групп проявляется в

Применение
Этиленгликоль применяют для синтеза полимер­ных материалов и в качестве антифриза. В больших количествах его используют также для получения диоксана, важного (хотя и токсич­ного) лабораторно

Физические свойства
Фенолы в большинстве своем – кри­сталлические вещества (мета-крезол – жидкость) при комнатной температуре. Они обладают характерным запахом, довольно плохо растворимы в холодной воде,

Способы получения
1. Получение из галогенбензолов. При на­гревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой об­разуется фенол:

Химические свойства
В фенолах p-орбиталь атома кислорода образует с ароматическим кольцом единую π-систему. Вследствие такого взаимодействия электронная плотность у атома кислорода уменьшается, а в бензольном кол

Номенклатура и изомерия
Органические соединения, в молекуле которых имеется карбо­нильная группа, называют карбонильным

Получение
1. Гидратация алкинов. Из ацетилена получают аль­дегид, из его гомологов – кетоны: Из-за

Химические свойства
Химические свойства альдегидов и кетонов определяются тем, что в состав их молекул входит карбонильная группа с полярной двойной связью. Альдегиды и кетоны – химически активные со­единения

Применение
Формальдегид – газ с резким раздражающим запа­хом. 40% водный раствор формальдегида называется формалином. Формальдегид получают в промышленности в круп­ных масштабах окислением метана или метанола

Номенклатура и изомерия
Карбоновыми кислотами называют соединения, содержащиекарбоксильную группу

Физические свойства
Насыщенные алифатические монокарбоновые кислоты образуют гомологический ряд, который характери­зуется общей формулой CnH2n+1COOH. Низшие члены этого ряда при обычны

Получение
1. Окисление первичных спиртов – общий способ получения карбоновых кислот. В качестве окислителей при­меняют КМnО4 и К2Сr2O7.

Химические свойства
Карбоновые кислоты – более сильные кислоты, чем спирты, поскольку атом водорода в карбоксильной группе обладает повышенной подвижностью благодаря влиянию группы –СО. В водном растворе карбоновые ки

Применение
Насыщенные кислоты. Муравьиная кислота НСООН. Назва­ние связано с тем, что кислота содержится в выделениях муравьев. Широко применяется в фармацевтической и пищевой промышле

Номенклатура и изомерия
Среди функциональных производных карбоновых кислот особое место занимают сложные эфиры – соединения, представляющие карбоновые кислоты, у которых атом водорода в карбоксильной группе заменен

Физические свойства
Сложные эфиры низ­ших карбоновых кислот и спиртов представляют собой летучие, ма­лорастворимые или практически нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, наприме

Химические свойства
1. Реакция гидролиза или омыления. Реакция этерификации является обратимой, поэтому в присутствии кислот будет проте­кать обратная реакция, называемая гидролизом, в результат

Жиры и масла
  Среди сложных эфиров особое место занимают природные эфиры – жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами с неразветвленной уг­леродно

Номенклатура и изомерия
Про­стейший моносахарид – глицериновый альдегид, С3Н6О3: Осталь

Физические и химические свойства глюкозы
Глюкоза С6Н12О6 представляет собой белые кристаллы, сладкие на вкус, хорошо растворимые в воде. В линейной форме молекулы глюкозы содержат одну аль

Дисахариды
Важнейшие дисахариды – сахароза, мальтоза и лактоза. Все они являются изомерами и имеют формулу С12Н22О11, однако их строение различно. Молек

Полисахариды
Молекулы полисахаридов можно рассматривать как продукт по­ликонденсации моносахаридов. Общая формула полисахаридов (С6Н10О5)n. Мы рассмотрим важнейшие пр

Номенклатура и изомерия
Общая формула предельных алифатических аминов CnH2n+3N. Названия аминов обычно производят, перечисляя углеводородные радикалы (в алфавитном порядке) и доба

Физические свойства
Метиламин, диметиламин и триметиламин – газы, средние члены алифатического ряда – жидкости, высшие – твердые вещества. Между молекулами аминов в жидкой фазе обра­зуются слабые водородные связи, поэ

Получение
1. Основной способ получения аминов – алкилирование аммиака, которое происходит при нагревании алкилгалогенидов с аммиаком:

Химические свойства
1. Благодаря наличию электронной пары на атоме азота, все амины обладают основными свойствами, причем алифатические амины являются более сильными основаниями, чем аммиак. Водные растворы аминов име

Ароматические амины
Анилин (фениламин) C6H5NH2 – родоначальник класса арома­тических аминов, в которых аминогруппа непосредственно связана с бензольным кольцом. Эта св

Физические свойства
Анилин – бесцветная маслянистая жид­кость, немного тяжелее воды, мало растворима в воде, растворима в этиловом спирте и в бензоле. Основной способ получения анилина – восстановление нитроб

Химические свойства
1. Анилин – гораздо более слабое осно­вание, чем алифатические амины (Кb = 5,2-10-10). Это объясняется тем, что электронная пара атома азота, которая обусловливает ос­н

Номенклатура и изомерия
Аминокислоты – это органические бифункциональные соедине­ния, в состав которых входят карбоксильная группа –СООН и ами­ногруппа –NH2. В зависимости от взаимного расположения обеих функци

Химические свойства
Аминокислоты – это органические амфотерные соединения. Они содержат в составе молекулы две функцио­нальные группы противоположного характера: аминогруппу с основ­ными свойствами и карбоксильную гру

Пептиды
Пептиды можно рассматривать как продукты конденсации двух или более молекул аминокислот. Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образо­ванием продук

Химические свойства
1. Разрушение вторичной и третичной структуры белка с сохранением первичной структуры называется денатурацией. Она происходит при нагревании, изменении кислот­ности с

Биологическое значение белков
Биологическое значение белков чрезвычайно велико. 1.Абсолютно все химические реакции в организме протекают в присутствии катализаторов – ферментов. Даже такая простая ре­акци

Шестичленные гетероциклы
Пиридин C5H5N – простейший шестичленный ароматический гетероцикл с одним атомом азота. Его можно рассматривать как аналог бензола, в котором одна группа СН за

Пятичленные гетероциклы
Пиррол C4H4NH – пятичленный гетероцикл с одним атомом азота.

Строение нуклеиновых кислот
Нуклеиновые кислоты – это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передаче наследственной информации в живых организ­мах. Молекуля

Биологическая роль нуклеиновых кислот
ДНК – главная молекула в живом организме. Она хранит гене­тическую информацию, которую передает от одного поколения к другому. В молекулах ДНК в закодированном виде записан состав всех белков орган

Цитозин гуанин
Таким образом, информация, содержащаяся в ДНК, как бы перепечатывается в мРНК, а последняя доставляет ее в рибосомы. 2. Транспортная РНК (тРНК) переносит аминокислоты к рибо­сомам,

Общая характеристика полимеров
Довольно часто общую формулу полимеров можно записать в виде (-Х-)n, где фрагмент -Х- называется элементарное звено, а число n – сте­пень полимериза

Пластмассы
Пластмассами называют материалы на основе полимеров, спо­собные изменять свою форму при нагревании и сохранять новую форму после охлаждения. Благодаря этому свойству пластмассы легко поддаются меха

Волокна
Одна из важных областей применения полимеров – изготовление волокон и тканей. Рассмот­рим два ва

Каучуки
Каучуки – продукты полимеризации диенов и их производных. Натуральный каучук получают из латекса – сока некоторых тропических растений. Его строение можно установит

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги