рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Строение ферментов

Строение ферментов - раздел Химия, КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ Метаболит - Вещество, Которое Участвует В Метаболических...

Метаболит - вещество, которое участвует в метаболических процессах.

Субстрат –вещество, которое вступает в химическую реакцию.

Продукт –вещество, которое образуется в ходе химической реакции.

Ферменты характеризуются наличием специфических центров катализа.

Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр.

Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.

У группы регуляторных ферментов есть аллостерические центры, которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.

Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).

Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом, а каталитически активную форму сложного белка – холоферментом. Таким образом: холофермент = апофермент + кофермент.

В качестве коферментов функционируют:

· гемы,

· нуклеотиды,

· коэнзим Q,

· ФАФС,

· SAM,

· Глутатион

· производные водорастворимых витаминов:

Витамины Коферменты
РР (никотиновая кислота) НАД+, НАДФ+
В2 (рибофлавин) ФАД, ФМН
В6 (пиридоксаль) Пиридоксальфосфат
В1 (тиамин) Тиаминпирофосфат
В12 Кобаламины

Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой. Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат. Это, например, НАД+, НАДФ+. Косубстрат присоединяется к ферменту в момент реакции.

Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg2+.

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:

НАДН2 НАД+

пируват ←ЛДГ→ лактат

ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ1 (НННН), ЛДГ2 (НННМ), ЛДГ3 (ННММ), ЛДГ4 (НМММ), ЛДГ5 (ММММ).

Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ1, ЛДГ2 (миокард, надпочечники), где анаэробный обмен - ЛДГ4, ЛДГ5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ4, ЛДГ5. После рождения в некоторых тканях происходит увеличение содержания ЛДГ1, ЛДГ2.

Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Локализация и компартментализация ферментов в клетке и тканях.

Ферменты по локализации делят на 3 группы:

I – общие ферменты (универсальные)

II - органоспецифические

III - органеллоспецифические

Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.

Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.

Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).

Органеллоспецифические ферменты. Разным органеллам присущ специфический набор ферментов, который определяет их функции.

Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:

1) Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза

2) Цитоплазма: ферменты гликолиза, пентозного цикла.

3) ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).

4) Рибосомы: ферменты обеспечивающие синтез белка.

5) Лизосомы: содержат гидролитические ферменты, КФ (кислая фосфатаза).

6) Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.

7) Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК ( РНК-полимераза, НАД-синтетаза).

8) Ядрышко: ДНК-зависимая-РНК-полимераза

 

В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).

Среди ферментов выделяется немногочисленная группа регуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.

Строгая локализация всех ферментов закодирована в генах.

Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ

ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию... Кафедра биохимии...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Строение ферментов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛЕКЦИЯ № 1
Тема: Введение в биохимию. Ферменты: строение, свойства, локализация, номенклатура и классификация Факультеты: лечебно-профилактический, медико-профилактический, педиатрич

Сравнение каталитического действия ферментов и неорганических катализаторов
Сходство ферментов и неорганических катализаторов Отличие ферментов от неорганических катализаторов 1. Ускоряют только термодинами

Оксидоредуктазы
Катализируют окислительно-восстановительные реакции. В реакцию вступают 2 вещества и 2 образуются, одно окисляется, другое восстанавливается: Sвост + S’окисл ↔ S’вост + Sокисл Оксидо

Трансферазы
Ферменты этого класса принимают участие в переносе атомных групп, молекулярных остатков от одного соединения к другому. В реакцию вступают 2 вещества и 2 образуются: S-G + S’ ↔ S + S’-G.

Изомеразы
Взаимопревращения оптических, геометрических, позиционных изомеров. В реакцию вступает 1 вещество и 1 образуется. Исходя из типа катализируемой реакции изомеризации выделяется несколько подклассов:

Лигазы (синтетазы)
Соединение 2 молекул с использованием энергии макроэргических соединений (АТФ и др). В реакцию вступают 3 вещества, образуется 3 вещества. Систематическое название субстрат: суб

Их роли в регуляции активности ферментов.
Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.   Одним из важнейших свойств живых организмов является способность к поддержан

Аллостерическая регуляция каталитической активности ферментов
Аллостерическими ферментами называют ферменты, активность которых регулируется обратимым нековалентным присоединением модулятора (активатора и ингибитора) к аллостерическому центру. Ингибиторами ал

III. Механизмы регуляции количества ферментов
Количество ферментов в клетке зависит от скорости их синтеза и распада. Синтез ферментов регулируется индукторами и репрессорами. В качестве индукторов и репрессоров выступают некоторые ме

Клеточная сигнализация
В многоклеточных организмах поддержание гомеостаза обеспечивают 3 системы: 1). нервная, 2). гуморальная, 3). иммунная. Регуляторные системы функционируют с участием сигнальных мол

Участие рецепторов в трансмембранной передаче сигнала
вторичные посредники:

Регуляторные белки
G-белки - универсальные посредники, передающие сигнал от рецепторов к ферментам клеточных мембран. В настоящее время известно более 50 G-белков: · Gs-белок ак

Вторичные посредники (мессенджеры)
Мессенджеры – низкомолекулярные вещества, переносящие сигналы гормонов внутри клетки. Они обладают высокой скоростью перемещения, расщепления или удаления (Са2+, цАМ

Аденилатциклаза (АЦ)
Гликопротеин с массой от 120 до 150 кДа, имеет 8 изоформ, ключевой фермент аденилатциклазной системы, с Mg2+ катализирует образование вторичного посредника цАМФ из АТФ. АЦ содер

Протеинкиназа А (ПК А)
ПК А есть во всех клетках, катализируют реакцию фосфорилирования ОН- групп серина и треонина регуляторных белков и ферментов, участвует в аденилатциклазной системе, стимулируется цАМФ. ПК А состоит

Фосфодиэстеразы (ФДЭ)
ФДЭ превращает цАМФ и цГМФ в АМФ и ГМФ, инактивируя аденилатциклазную и гуанилатциклазную систему. ФДЭ активируется Са2+, 4Са2+-кальмодулином, цГМФ. NO-синтаз

Действие NO
NO - низкомолекулярный газ, легко проникает через клеточные мембраны и компоненты межклеточного вещества, обладает высокой реакционной способностью, время его полураспада в среднем не более 5 с, ра

Последовательность событий, приводящих к каталитической активации ферментов
1). 1 Гормон (Г) присоединяется к Rs-рецептору с образованием гормон-рецепторного комплекса, который через несколько Gs-белков активирует несколько аденилатциклаз (комплекс гормон-Ri-рецептор через

Последовательность событий, приводящих к каталитической активации ферментов
1). Гормон (Г) присоединяется к R-рецептору с образованием гормон-рецепторного комплекса, который через G-белок активирует фосфолипазу С; 2). Фосфолипаза С расщепляет фосфатидилинозитол-4,

Последовательность событий, приводящих к каталитической активации ферментов
1).   Гуанилатциклазная система функционирует в легких, почках, кишечнике, сердце, надпочечниках, эндотелии кишечника, сетчатке и др. Она участвует в регуляции водно-солевого

Цитоплазматических и ядерных рецепторов
Через цитоплазматические и ядерные рецепторы действуют кортикоиды, половые

ЛЕКЦИЯ № 3
Тема: Медицинская энзимология Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс. Энзимология – э

Наследственные энзимопатии
Наследственные энзимопатии – это заболевания, вызванные наследственными нарушениями биосинтеза ферментов или их структуры и функции. В норме:

Приобретенные энзимопатии
Приобретенные энзимопатии делятся на: алиментарные, токсические и вызванные различными патологическими состояниями организма. А). Алиментарные энзимопатии – это заболе

Определение активности органо-, органеллоспецифических ферментов и их изоферментов.
Определение в биологических жидкостях активности ферментов и их изоферментов позволяет установить локализацию патологического процесса, его стадию, выраженность, а также эффективность его лечения.

III Энзимотерапия
Энзимотерапия – применение ферментов животного, бактериального или растительного происхождения и регуляторов активности ферментов с лечебной целью. Внедрению ферментны

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги