рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Структура и функции РНК.

Структура и функции РНК. - раздел Химия, Лекции по курсу: Биохимия Тема: ПЕПТИДЫ, БЕЛКИ: ИХ СТРОЕНИЕ, СВОЙСТВА, ЗНАЧЕНИЕ В ОРГАНИЗМЕ, МЕТОДЫ ИССЛЕДОВАНИЯ.ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ. 10 В Отличие От Днк, Молекула Рнк Состоит Из Одной Полинуклеотидной Цепи, Котора...

В отличие от ДНК, молекула РНК состоит из одной полинуклеотидной цепи, которая спирализована сама на себя, т.е. образует всевозможные «петли» и «шпильки» за счет взаимодействий комплементарных азотистых оснований (вторичная структура). У некоторых вирусов встречаются двуцепочечные РНК, которые несут генетическую информацию аналогично ДНК.

Существуют:

1 – матричные РНК (мРНК);

2 – рибосомные РНК (рРНК);

3 – транспортные РНК (тРНК).

 

Рибосомные РНК. На долю рРНК приходится 80-90% клеточной РНК. Локализованы в рибосомах, в комплексе с рибосомными белками. Рибосомы состоят из двух частей и представляют собой нуклеопротеины, состоящие из рРНК и белка в соотношении 1:1 (для эукариот) и 2:1 (для прокариот).

Биологическая роль рРНК – являются структурной основой рибосом, взаимодействует с мРНК и тРНК в процессе биосинтеза белка, принимает участие в процессе сборки полипептидной цепи.

У эукариот обнаружено 4 типа рРНК с различным коэф. седиментации: 18S(в малой части рибосомы), а 28S, 5,8S и 5S (сведбергов) – в большой части рибосомы.. Они различаются молекулярной массой (35 000-1 600 000) и локализацией в рибосомах.

Вторичная структура рРНК характеризуется спирализацией цепи самой на себя, третичная – ее компактной укладкой.

Матричные РНК. Матричная РНК составляет 2-3% от всей клеточной РНК, синтезируется мРНК в ядре клетки на матрице ДНК (процесс транскрипции), переписывая с нее генетическую информацию по принципу комплементарности.

 

ДНК -А-Т-Г-Ц-

ДНК -Т-А-Ц-Г-

мРНК -А-У-Г-Ц-

 

Затем мРНК поступают в цитоплазму, соединяются с рибосомой и выполняют роль матрицы для биосинтеза белка. Каждой аминокислоте соответствует в мРНК определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. Последовательность кодонов в цепи мРНК определяет последовательность аминокислот в белке. Всего может быть 64 кодона. Из них 61 кодон кодирует аминокислоты, а 3 кодона – кодоны терминаторы (терминирующие), которые обозначают окончание белкового синтеза. Существуют также инициирующие кодоны, которые соответствуют первой аминокислоте в белке и чаще всего соответствуют аминокислоте метионину.

Поскольку мРНК несет наследственную информацию о первичной структуре белка, нередко ее называют информационной РНК (иРНК). Каждый отдельный белок, синтезируемый в клетке, кодируется определенной «своей» мРНК или ее участком. мРНК образует несколько двуспиральных «шпилек», на концах которых располагаются знаки (например, ААУААА) инициации (начала синтеза белка) и терминации (окончания синтеза белка).

Т.о. информация о строении белка закодирована в ДНК с помощью генетического кода, который является линейным, непрерывным, триплетным, выражденным. Он является универсальным.

Молекулярный вес мРНК варьирует в широких пределах от 35 000 до нескольких млн. мРНК ранее считались короткоживущими РНК. Для микроорганизмов время жизни мРНК несколько секунд или минут. Но для эукариот – оно может составлять от нескольких часов до нескольких недель.

Транспортная РНК. Составляют 10-20% клеточной РНК.

Функции тРНК:

1 - связывают аминокислоты и транспортируют их в рибосому, где происходит синтез белка;

2 – кодируют аминокислоты;

3 – Расшифровывают генетический код.

Содержатся в цитоплазме. Молекулярный вес от 22 000 до 27 000. Всего существует свыше 60 тРНК.

Каждая тРНК может переносить только 1 строго определенную аминокислоту.

тРНК именуются по названию аминокислот. Например, аланиновая тРНК. тРНК, связывающие одну и ту же аминокислоту, называют изоакцепторными и нумеруют: тРНК1вал, тРНК2вал и т.д.

тРНК содержат много минорных нуклеиновых остатков (около 10%). Они обеспечивают защиту тРНК от действия рибонуклеаз (ферментов), специфичность взаимодействия с переносимой аминокислотой и т.д.

Вторичная структура всех тРНК имеет форму «клеверного листа». В его составе различают:

1. акцепторный стебель – к нему присоединяется аминокислота.

2. Псевдоуридиловая петля – используется для связи тРНК с рибосомой.

3. Дополнительная петля – назначение неизвестно.

4. Антикодоновая петля – содержит антикодон (триплет нуклеиновых остатков, которые комплементарны кодону мРНК, с его помощью тРНК соединяется с мРНК);

5. Дигидроуридиновая петля – обеспечивает связывание тРНК со специфическим ферментом (аминоацил-тРНК-синтетазой), который соединяет аминокислоту с тРНК .

Стабилизируется вторичная структура водородными связями между комплементарными основаниями.

Третичная структура тРНК имеет неправильную Г-образную форму. стабилизирована водородными и др. связями.

 

– Конец работы –

Эта тема принадлежит разделу:

Лекции по курсу: Биохимия Тема: ПЕПТИДЫ, БЕЛКИ: ИХ СТРОЕНИЕ, СВОЙСТВА, ЗНАЧЕНИЕ В ОРГАНИЗМЕ, МЕТОДЫ ИССЛЕДОВАНИЯ.ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ. 10

Федеральное агентство по образованию... Государственное образовательное учреждение высшего профессионального...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Структура и функции РНК.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аминокислоты.
Классификация аминокислот разработана на основе химического строения радикалов. Различают циклические и алифатические (ациклические) аминокислоты. По числу аминных и карбоксильных групп аминокислот

Конформация белков
Линейные полипептидные цепи индивидуальных белков за счет взаимодействия функциональных групп аминокислот приобретают определенную пространственную трехмерную структуру, или конформацию. В глобуляр

Пептиды
Пептиды — органические молекулы, в состав которых входит несколько остатков аминокислот, связанных пептидной связью. В зависимости от количества остатков аминокислот и молекулярной массы различают:

Роль белков в организме человека
Ферментативная — в клетке участвуют в биохи­мических реакциях 2000 различных ферментов, и все они по химической природе — белки (простые или сложные). Гормональная — в организме чело

Анализ мембранного равновесия Доннана
Если в клетке нет белка и его соли, то С1 = 0, тогда , т. е. при отсутствии в клетке ВМ

ФЕРМЕНТЫ
  Ферменты (энзимы) – биологические катализаторы, ускоряющие химические реакции обмена веществ в организме. Катализ – это процесс изменения скорости хими

Отличие ферментов от неорганических катализаторов
1. Ферменты имеют более высокую каталитическую активность (выше в млн.раз); 2. Каталитическая активность проявляется в очень мягких условиях (умеренные температуры 37-40ºС, нормальное

Строение ферментов
До последнего времени считалось, что абсолютно все ферменты являются веществами белковой природы. Но в 80-е годы была обнаружена каталитическая активность у некоторых низкомолекулярных РНК. Эти фер

Активный центр ферментов.
Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естествен

Механизм действия ферментов
Механизм действия ферментов заключается в следующем. При соединении субстрат с ферментом образуется нестойкий фермент субстратный комплекс. В нем происходит активация молекулы субстрата за счет:

Специфичность
Способность фермента катализировать определенный тип реакции называют специфичностью. Специфичность бывает трех видов: 1. - относительная или групповая специфичность

Кинетика ферментативных реакций
  Скорость ферментативных реакций зависит от следующих основных факторов: 1. концентрации фермента; 2. концентрации субстрата; 3. температуры; 4. р

Определение активности фермента
Определить количественное содержание фермента в биологических объектах очень трудно, т.к. он присутствует в тканях в ничтожно малых концентрациях. Поэтому о количестве фермента судят по скорости ка

Специфичность действия ферментов
По специфичности действия ферменты делят на 2 группы: обладающие абсолютной специфич­ностью и относительной специфичностью. Относительная (групповая) специфичность наблюдается, когда ферме

Регуляция путём ковалентной модификации
К этому пути относятся: 1) частичный протеолиз 2) ассоциация – диссоциация 3) фосфорилирование - дефосфорилирование. 1)Частичный протеолиз. Некоторые фе

Регуляция по типу обратной связи.
В состав ферментов кроме активного центра может входить иной центр — аллостерический, к которому мо­гут присоединяться низкомолекулярные вещества и из­менять активность ферментов. Аллостерический (

Типы ингибирования
Различают обратимое и необратимое ингибирование ферментов. Ингибирование является необратимым, если ингибитор необратимо связывается с ферментом (образо­ванный комплекс субстрат-ингибитор не распад

Конкурентное ингибирование
Конкурентное ингибирование наблюдается, когда ин­гибитор и субстрат имеют сходные структуры и конкури­руют за связывание с активным центром фермента. Если к ферменту Е добавить конкурентный ингибит

Изоферменты
Изоферменты — это ферменты, катализирующие одну и ту же реакцию, но отличающиеся друг от друга по АК-составу, порядку связывания АК, электрофоретической подвижности, Км, локализации в клетке и орга

Количественная характеристика активности фермента
За единицу ферментативной активности (Е) прини­мают количество фермента, катализирующее превраще­ние 1 мкмоль субстрата за 1 мин:

Энзимодиагностика
В нормальных условиях активность ферментов в сыворотке крови относительно невелика по сравнению с их активностью в тканях. При поражении ряда органов и тканей, что связано с нарушением проницаемост

Энзимотерапия
Использование ферментов с терапевтической целью применяется давно. Еще в прошлом веке, после открытия пепсина, его стали применять при лечении диспепсии (на­рушение пищеварения) и труднозаживающих

Обмен липидов
Превращения липидов в процессе пищеварения и всасывание. Липиды — важная составная часть пищи. Взрослому человеку требуется от 70 до 145г жира в сутки в зависимости от т

Транспорт липидов
Ресинтезированные триацилглицерины, фосфолипиды, холестерин и его эфиры в эпителиальных клетках кишечника соединяются |с небольшим количеством белка и образуют хиломикроны (ХМ- частицы диаме

Тема УГЛЕВОДЫ
Термин «Углеводы», предложенный в Х1Х столетии, был основан на предположении, что все углеводы содержат 2 компонента – углерод и воду, и их элементарный состав можно выразить общей формулой Сm(H

МОНОСАХАРИДЫ.
Моносахариды – производные многоатомных спиртов, содержащие карбоксильную группу. В зависимости от положения в молекуле карбоксильной группы моносахариды подразделяют на альдозы и кетозы.

Стериоизомерия моносахаридов.
Все моносахариды содержат ассиметричные (хиральные) атомы углерода. Все изомеры моносахаридов подразделяют на D- и L-формы по сходству расположения групп атомов у последнего центра ассиметрии с рас

Циклические (полуацетальные) формы моносахаридов.
Любой моносахарид с конкретными физическими свойствами (температура плавления, растворимость и т.д.) характеризуется специфической величиной удельного вращения [α]20D, ко

Реакции полуацетального гидроксила.
Моносахариды, как в кристаллическом состоянии, так и в растворе в основном существуют в полуацетальных формах. Полуацетальный гидроксил отличается большой реакционной способностью и может замещатьс

Реакции с участием карбонильной группы.
- окисление моносахаров. Обработка альдоз слабыми окислителями приводит к превращению альдегидной группы в положении атома С-1 в карбоксильную группу с образованием так

ОЛИГОСАХАРИДЫ
Олигосахариды – углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т.д. Диса

ПОЛИСАХАРИДЫ
Полисахариды – высокомолекулярные продукты поликонденсации моносахаридов, связанных друг с другом гликозидными связями и образующие линейные или разветвленные цепи. Наиболее часто встречающимся мон

ГЕТЕРОПОЛИСАХАРИДЫ.
Важнейшие представители гетерополисахаридов в органах и тканях животных и человека – гликозаминогликаны (мукополисахариды). Они состоят из цепей сложных углеводов, содержащих аминосахара и уроновые

Промежуточный обмен углеводов в организме
В промежуточном обмене углеводов в организме можно выделить следующие процессы: 1. Поступление глюкозы в клетки тканей. 2. Биосинтез гликогена в печени и мышцах. 3. Распа

ВИТАМИНЫ
  Витамины - это низкомолекулярные органические соединения, которые, присутствуя в пище в небольших количествах, являются незаменимыми ее компонентами, обе

Жирорастворимые витамины
  Витамины группы А (ретинол, антиксерофтальмический)   Известны 3 витамина группы А: А1, А2 и цис-форма витамина А1 (неовитамин А)

Биологическая роль
1. Вит. А участвует в регуляции проницаемости мембран; 2. Участвует в транспорте моносахаридов, необходимых для синтеза гликопротеинов; 3. Оказывает влияние на усвоение белка пищи

Водорастворимые витамины
Витамин В1 (тиамин, антиневрический)   Первый кристаллический витамин, выделенный Функом в 1912 г. Химическая структура: 2 кольца – пи

Биологическая роль
1. ТПФ участвует в реакциях декарбоксилирования α-кетокислот; 2. ТПФ участвует в расщеплении и синтезе α-оксикислот (например, кетосахаров), т.е. в реакциях синтеза и расщепления

Витамин С (аскорбиновая кислота, антискорбутный витамин).
Химическое строение. Витамин С представляет собой лактон кислоты со структурой, близкой структуре L-глюкозы. Благодаря наличию двух асимметрических атомов угл

Авитаминоз и гиповитаминоз
Недостаточность витамина РР вызывает заболевание пеллагрой (шершавая кожа). Ведущий симптом болезни – дерматит. Кожа краснеет, становится шершавой, покрывается пузырями, трещинами, на местах лопающ

Общая характеристика нуклеиновых кислот
Нуклеиновые кислоты – это высокомолекулярные органические полимеры (полинуклеотиды),обеспечивающие хранение и передачу генетической информации. Были открыты в 1870 г. немецким учены

Химическое строение РНК и ДНК.
  Нуклеиновые кислоты состоят из мононуклеотидов. Мононуклеотиды нуклеиновых кислот в свою очередь состоят из трех компонентов:   Нуклеиновые кислоты

Азотистое основание Углеводный компонент Фосфорная кислота
                 

Пуриновые Пиримидиновые Рибоза Дезоксирибоза
А

РНК ДНК
Н3РО4 Н3РО4 Рибоза Дезоксирибоза Азотистые основания (А, Г, Ц, У) ( А, Г, Ц, Т)   В таблице 1 представлены сост

Первичная структура РНК и ДНК.
Первичная структура у РНК и ДНК одинакова – это линейная полинуклеотидная цепь, в которой нуклеотиды соединены между собой 3/5/ фосфодиэфирными связями, которые образуют остат

Вторичная структура ДНК.
Вторичная структура ДНК характеризуется правилом Э. Чаргаффа (закономерность количественного содержания азотистых оснований): 1. У ДНК молярные доли пуриновых и пиримидино

Третичная структура ДНК.
Третичная структура ДНК – это спираль и суперспираль в комплексе с белками. ДНК может существовать в линейной форме (в хромосомах эукариот) и в кольцевой (у прокариот и в митохондриях). Спирализаци

Тема: ОБМЕН НУКЛЕИНОВЫХ КИСЛОТ И НУКЛЕОТИДОВ В ОРГАНИЗМЕ ЧЕЛОВЕКА.
  Обмен нуклеотидов в организме включает процессы анаболизма (биосинтез пуриновых — основной и резерв­ный путь — и пиримидиновых нуклеотидов) и катаболиз­ма (распад нуклеиновых кислот

Транскрипция
  Транскрипция — биосинтез молекул РНК на матри­це ДНК, локализован в ядре клетки, идет постоянно, не­зависимо от цикла клетки. Субстратами и источниками энергии для биосинте

Биосинтез белка
  Биосинтез белка (трансляция) протекает в полисомах и приводит к построению полипептидной цепи из амино­кислот (первичной структуры белка). Для процесса транс­ляции необходимы: матри

Регуляция транскрипции. Теория Оперона
  Оперон — участок ДНК, кодирующий строение од­ного вида белков, содержащий регуляторную зону, конт­ролирующую синтез этих белков. Регуляция транскрипции м-РНК включает индук

Цикл лимонной кислоты — ЦТК — цикл Кребса
  Цикл лимонной кислоты представляет собой серию реакций, протекающих в митохондриях, в ходе которых осуществляется катаболизм ацетильных групп (до 2СО2) и образование восс

Регуляция цикла Кребса
Лимитирующая реакция всего цикла Кребса — ре­акция синтеза цитрата (фермент цитратсинтаза). Регуляторные ферменты цикла Кребса: Пируватдегидрогеназа (ингибиторы: АТФ, НАДН +

Роль кислорода в метаболизме
  Организм человека функционирует в аэробных усло­виях: 90% энергии он получает при участии кислорода. Кислород выполняет две важнейшие функции в метабо­лизме в процессе жизнедеятельн

Токсичность кислорода
  Для организма человека токсичность кислорода обус­ловлена токсичностью его активных форм, которые мо­гут образовываться при переносе электронов от окисляе­мых субстратов на кислород

Нуклеозидтрифосфаты
  Наиболее распространенными высокоэнергетически­ми общими промежуточными продуктами являются нук­леозидтрифосфаты (НТФ), которые могут передавать свою концевую высокоэнергетическую ф

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги