рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ХОЛЕСТЕРИН

ХОЛЕСТЕРИН - Лекция, раздел Химия, КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ Холестерин (Хс) — Стероид, Характерный Только Для Животных Организмов....

Холестерин (ХС) — стероид, характерный только для животных организмов.

Источником ХС в организме являются синтетические процессы и пища. В сутки в организме синтезируется около 1г (0.7) ХС. В печени синтезируется более 50% ХС, в тонком кишечнике — 15— 20%, остальной ХС синтезируется в коже, коре надпочечников, половых железах. С пищей поступает в сутки 0,3—0,5г (0.3-0.4) ХС. Общее содержание ХС в организме составляет в среднем 140г, 90-93% находиться в клетках, 7-10% - в крови (5,2+1,3 ммоль/л).

Биологическая роль ХС

1. ХС входит в состав всех мембран клеток, увеличивает их электроизоляционные свойства, придает им жесткость и прочность;

2. В мембране ХС защищает полиненасыщенные ЖК от окисления;

3. из ХС синтезируются жёлчные кислоты (0,5-0,7 г ХС в сут) 0.45, стероидных гормоны (половые и кортикоиды) (40 мг ХС в сут) и витамин Д3 (10 мг ХС в сут).

4. ХС является компонентом желчи, участвует в переваривании липидов.

Обмен ХС чрезвычайно сложен, в нем участвует около 300 разных белков.

Синтез ХС

Реакции синтеза ХС происходят в цитозоле и ЭПР клеток. Это один из самых длинных метаболических путей в организме человека (около 100 последовательных реакций).

Синтез ХС делят на 3 этапа:

I этап синтеза ХС - образование мевалоната (мевалоновой кислоты).

1. Две молекулы ацетил-КоА конденсируются тиолазой с образованием ацетоацетил-КоА;

2. Гидроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток к ацетоацетил-КоА с образованием ГМГ-КоА (3-гидрокси-3-метилглутарил-КоА). Эта последовательность реакций сходна с начальными стадиями синтеза КТ. Однако синтез КТ происходит в митохондриях печени, а реакции синтеза ХС — в цитозоле клеток.

3. ГМГ-КоА-редуктаза восстанавливает ГМГ-КоА до мевалоната с использованием 2 молекул НАДФH2. Фермент ГМГ-КоА-редуктаза — гликопротеин, пронизывающий мембрану ЭПР, активный центр которого выступает в цитозоль.

II этап синтеза ХС - образование сквалена

1. Мевалонат превращается в изопреноидную структуру — изопентенилпирофосфат (5 атомов С);

2. 2 изопентенилпирофосфата конденсируются в геранилпирофосфат (10 атомов С);

3. Присоединение изопентенилпирофосфата к геранилпирофосфату дает фарнезилпирофосфат (15 атомов С).

4. 2 фарнезилпирофосфата конденсируются в сквален (15 атомов С).

III этап синтеза ХС - образование ХС

Сквален циклазой превращается в ланостерол, (4 цикла и 30 атомов С).

Далее происходит 20 последовательных реакций, превращающих ланостерол в ХС (27 атомов С).

В организме человека изопентенилпирофосфат также служит предшественником убихинона (KoQ) и долихола, участвующего в синтезе гликопротеинов.

Регуляция синтеза ХС

Ключевой фермент синтеза ХС ГМГ-КоА-редуктаза регулируется несколькими способами:

· ХС, желчные кислоты (в печени) репрессируют ген ГМГ-КоА-редуктазы. В норме поступление ХС с пищей снижает синтез собственного ХС в печени, однако с возрастом эффективность этой регуляции у многих людей снижается и уровень ХС повышается.

· Инсулин через дефосфорилирование осуществляет активацию ГМГ-КоА-редуктазы.

· Глюкагон через фосфорилирование осуществляет ингибирование ГМГ-КоА-редуктазы.

Повышение концентрации исходного субстрата ацетил-КоА стимулирует синтез ХС.

Таким образом, синтез ХС активируется при питании углеводами и ингибируется при голодании.

Этерификация ХС

ХС образует с ЖК сложные эфиры (ЭХС), которые более гидрофобны чем сам ХС. В клетках эту реакцию катализирует АХАТ (ацилКоА: холестеролацилтрансферазой): ХС + АцилКоА → ЭХС + HSKoA

АХАТ содержится лишь в некоторых тканях, синтезированный им ЭХС формирует в цитоплазме липидные капли, которые являются формой хранения ХС. По мере необходимости ЭХС гидролизуются холестеролэстеразой на ХС и ЖК.

ЭХС синтезируются также в крови в ЛПВП под действием ЛХАТ (лецетин: холестеролацилтрансферазой): ХС + лецитин → ЭХС + лизолецитин

В составе ЛП ЭХС обеспечивают большую часть транспорта ХС в крови. На долю ЭХС крови приходиться 75% от общего количества ЭХС в организме.

Выведение ХС из организма

Так как производные циклопентанпергидрофенантрена (стероиды) водонерастворимы и в организме не расщепляются, они выводятся из организма в основном с калом в составе желчи и немного с потом через кожу.

В сутки из организма выводится от 1,0г до 1,3г ХС. ХС выводится с желчью (0,5-0,7 г/сут) в основном в виде жёлчных кислот и частично в чистом виде. Часть ХС в кишечнике под действием ферментов бактерий восстанавливается по двойной связи, образуя холестанол и копростанол. С кожным салом в сутки выделяется 0,1г ХС.

 

 


ГИПЕРХОЛЕСТЕРОЛЕМИЯ

Концентрация ХС в крови взрослых составляет 5,2+1,2 ммоль/л, как правило, с возрастом она увеличивается. Нарушения обмена ХС чаще всего проявляется гиперхолестеролемией, повышением ХС в крови выше нормы.

Причины развития гиперхолестеринемии:

1. Избыточного поступления с пищей ХС. Так как выведение из организма ХС ограничено 1,2—1,5 г/сут, излишки ХС накапливаются;

2. Переедание, недостаточная физическая активность, ожирение, сахарный диабет и гипотериоз способствуют гипергликемии и гиперлипидемии. Избыток углеводов и липидов в организме идет на повышенный синтез ХС;

3. Избыток в пище насыщенных и дефицит полиненасыщенных ЖК стимулирует в организме синтез ХС;

4. Некоторые дислипопротеинемии. Любой дефект рецептора ЛПНП (часто) или белка апоВ-100, взаимодействующего с ним, приводит к распространённому наследственному заболеванию — семейной гиперхолестеролемии. Она сопровождается ксантоматозом и атеросклерозом. У гомозигот с дефектом рецептора ЛПНП смерть в возрасте 5—6 лет от инфаркта или инсульта;

Ещё в 1987 г. Goldstein и Brown окончательно установили, что причиной семейной гиперхолестеролемии (СГХ) является дефект гена, ответственного за синтез апоВ-100 ЛПНП-рецептора на мембране гепатоцитов. У больных гетерозигот количество рецепторов снижено на 50%, а уровень ЛПНП крови повышен вдвое, что сочетается с ускоренным развитием атеросклероза и ишемической болезни сердца с инфарктом миокарда уже в юном возрасте.

 

Коэффициент атерогенности = (ХСобщ –ХСЛПВП) / ХСЛПВП < 3

Гиперхолестеринемия вызывает атеросклероз и желчекаменную болезнь.

 

Статины – «золотой стандарт» терапии гиперхолестеринемии и атеросклероза – наиболее широко применяемая сейчас группа препаратов, доказавшая свою эффективность при ИБС и других формах атеросклероза во многих клинических исследованиях [Мартынов АИ и соавт., 1997; Кухарчук ВВ и соавт., 2003; Шевченко ОП, 2003]. Однако, было показано, что эти препараты оказывают некоторый токсический эффект на печень, пищеварительную систему и мышечную ткань. Кроме того, лечение статинами пожизненное, поскольку при прекращении их приёма наблюдается выраженный синдром отмены. Достаточно широкое применение статинов ограничивает и их высокая стоимость [Преображенский ДВ и соавт., 1995; Шевченко ОП, 2003]. Широкому применению других гиполипидемических препаратов препятствуют высокая частота побочных эффектов, риск возникновения гепатотоксичности и других органотоксических эффектов (фибраты, никотиновая кислота, анионообменные смолы) или менее выраженный эффект (пробукол и др.) [Джанашия ПХ, 1998; Аронов ДМ, 2000; Робинс Д, 2001].

Для лечения некоторых категорий больных атеросклерозом (например семейной гиперхолестеринемией), резистентных к диетической и гиполипидемической терапии, применяется ЛПНП-аферез. Метод заключается в экстракорпоральной сорбции из крови апоВ-содержащих ЛП с помощью специальных иммуносорбентов или декстранцеллюлозы. Эффект процедуры является значительным (снижение концентрации ХС (ЛПНП) до 80%), но кратковременным. Необходимы повторные пожизненные сеансы как минимум 1 раз в месяц [Малышев ПП, 1997; Чебышев АН, 2000; Bambauer R., 2002]. В связи со сложностью и высокой стоимостью данного способа лечения он может применяться у весьма ограниченного круга больных.

Инвазивные хирургические методы применяются лишь для лечения осложнений атеросклероза [Савельев ВС и соавт., 1999] и так же исключают системный подход терапии.

Показано, что при гиперхолестеринемии и атеросклерозе наблюдается выраженная дисфункция сосудистого эндотелия – нарушение его вазодилатирующей способности [137, 104, 166]. Нарушение эндотелийзависимого расслабления сосудов обусловлено изменением метаболизма оксида азота (NO) в стенке сосуда (изменение активности или дефицит субстрата для NO-синтазы, ускоренная деструкция NO и т.д.) [14, 82, 85,126,130]. Основным фактором, повреждающим эндотелий при ДЛП, являются модифицированные ЛПНП. Исследование дисфункции эндотелия в ходе атерогенеза стимулировало изучение микроциркуляции в эксперименте и клинике.

Дислипидемии и дисфункция эндотелия обусловливают возникновение дислипидогенной микроангиопатии [17,139].

Ранее было установлено, что дислипидогенная микроангиопатия является инициальным звеном в возникновении и прогрессировании хронической неспецифической органной патологии и атеросклеротических изменений в органных и магистральных артериях у кроликов [17,35,54]. Показано, что такие изменения микроциркуляции как спазм артериол и дилатация венул, эритроцитарные микростазы возникают с первых часов и дней АТД, то есть на самых ранних стадиях дислипопротеидемии. При прогрессировании ДЛП и атерогенеза наблюдается образование эритроцитарных агрегатов по типу «монетных столбиков» или более плотных, характерных для сладж-синдрома, капилляротромбоз, разрежение и выключение из кровотока капиллярных сетей. Появляются внесосудистые изменения в виде диапедеза эритроцитов, клеточных инфильтратов и периваскулярного отёка [17,16,19].

В последние годы появились работы, свидетельствующие о ведущей роли расстройств микроциркуляции при ишемической болезни сердца и других формах сосудистой патологии у человека. Описаны отдельные формы ИБС, обусловленные первичной дисфункцией микроциркуляторной системы сердца [123,129]. На клиническом материале было показано, что ИБС может быть обусловлена не столько нарушением перфузии миокарда через атеросклеротические коронарные артерии, сколько нарушением микроциркуляции сердца [40,114]. В настоящее время предложены методы диагностики (ультразвуковая доплерография) и коррекции (плазмаферез, ультрафиолетовое облучение крови) микроциркуляторных нарушений при атеросклерозе [1].

Таким образом, дислипидогенная микроангиопатия является первичной генерализованной реакцией эндотелия на гиперлипопротеидемию и приводит к циркуляторной гипоксии и полиорганной патологии (дистрофии) ещё до появления атеросклеротических бляшек в органных и магистральных артериях.

 

1.1.3 Дисфункция иммунорегуляторной системы как фактор развития ДЛП и атеросклероза.

Гомеостатическая функция иммунорегуляторной системы в организме осуществляется с помощью двух ветвей: системы мононуклеарных фагоцитов, образуемой клетками макрофагально-моноцитарного ряда, и системы лимфоидной ткани, образуемой различными популяциями лимфоцитов.

Клетки макрофагально-моноцитарного ряда осуществляют первую - воспалительную линию защиты организма. В ответ на воспалительную реакцию лимфоидная ткань запускает восстановительные процессы, осуществляемые с помощью двух важнейших функций лимфоцитов: иммунорегуляторной, обеспечивающей антителогенез, и морфорегуляторной, обеспечивающей постоянство численного состава клеток (паренхиматозных органов), их структурный и функциональный гомеостаз [4].

Очевидно, развивающаяся на фоне ДЛП и атеросклероза дисрегуляция иммуннорегуляторной системы с гиперсекрецией острофазных белков, приводит к угнетению лимфоидной ткани и подавлению восстановительных процессов в повреждёной печени и других органах. Это создаёт условия для преобладающего воздействия на них системной воспалительной реакции, которая не будучи сбалансирована, выступает в роли фактора прогрессирования атеросклеротического процесса.

Клетки rупфера, представляя собой клетки макрофагально-моноцитарного ряда, и являясь ключевыми эффекторами воспаления в организме, оказывают в тоже время регуляторное воздействие на гепатоциты, модулируя их функциональную активность [38,39]. Эндотелиоциты печени также вырабатывают медиаторы воспаления и иммунной защиты [3], участвуя, таким образом, в осуществлении эффекторных реакций печени и всего организма.

Одной из таких реакций – является способность гепатоцитов продуцировать острофазные белки: С-реактивный белок, сывороточный амилоид А, гаптоглобин и др., которым принадлежит важная роль в инициации и модулировании воспалительных и репаративных ответов организма [3]. Так, например, показано, что при содержании кроликов на ХС-диете уже на 4-7 дни параллельно с развитием гиперхолестеринемии происходило резкое увеличение концентрации СРБ в крови. При этом установлено, что острофазная реакция гепатоцита предшествует его жировой дистрофии [32].

Предполагается, что острофазные белки не только манифестируют, но провоцируют развитие ДЛП и атеросклероза. Показано [31], что острофазные белки блокируют апоВ-100 рецепторный эндоцитоз ЛПНП, легко и прочно связываются с ЛП и становятся физиологическими аналогами их апобелков. Так, например, С-реактивный белок может связать до 90% циркулирующих апоВ-ЛП [32,53].

Острофазная реакция печени и циркуляция острофазных белков в свою очередь ведут к активации и последующей дисрегуляции системы мононуклерных фагоцитов и системы лимфоидной ткани организма. Циркулирующие комплексы С-реактивный белок + ЛП, избыток ХС и ЛПНП и особенно м-ЛПНП, в условиях экспрессии молекул адгезии сосудистого эндотелия (VCAM), повреждают интиму сосуда, откладываются в ней (преимущественно в виде м-ЛПНП) [31,52] и становясь аутоантигенами, запускают местную - воспалительную и системную аутоиммунную реакции [31,33].

Активированные макрофаги, мигрирующие в сосудистую стенку, презентируют аутоантиген, активируют эндотелиоциты и начинают секретировать цитокины, ростовые факторы, кинины и другие медиаторы, привлекая в образующийся очаг воспаления клетки иммунной системы. Постоянная выработка цитокинов и факторов роста, на фоне продолжающегося отложения м-ЛПНП и ХС, приводят к пролиферации и миграции гладкомышечных клеток медии, повышенной секреции коллагена и развитию фиброза сосудистой стенки [31,33,43,44]. В конечном итоге формируется типичная атероматозная бляшка, которая относится к поздним атеросклеротическим изменениям.

При атеросклерозе обнаруживаются и системные иммунные сдвиги, обусловленные дисбалансом активности клеток лимфоидной ткани. Наблюдается снижение активности Т-супрессорного звена и активация В-звена иммунитета. In vitro отмечается двукратное снижение пролиферативного ответа лимфоцитов крови на митоген. То же самое наблюдается и при действии на них ЛПОНП больных атеросклерозом людей с ДЛП [8]. Однако, в Т-зависимых зонах селезёнки и лимфоузлов происходит активация лимфоцитогенеза (возрастает митотическая активность, увеличивается количество лимфобластов) [31], и это может указывать на блок оттока бластных клеток из органов иммуногенеза, т.е. на дисрегуляцию иммунных процессов в организме.

Всё вышеизложенное даёт право заключить, что атеросклероз – это хроническая системная воспалительная реакция организма со специфическими локальными проявлениями на стенке сосудов. Локальные проявления атеросклероза развиваются на фоне ДЛП (выражающейся нарушением соотношения отдельных фракций ЛП и липидов) в условиях дисфункции печени и иммунной системы и сопровождаются необязательным повышением концентраций ЛП и ХС в крови [25,31].

АТЕРОСКЛЕРОЗ

Атеросклероз – хроническое прогрессирующее заболевание крупных и средних эластических и мышечно-эластических артерий. Атеросклероз характеризуется пролиферативно-синтетическим ответом ряда клеток сосудистой стенки и крови – гладкомышечных макрофагов, тромбоцитов, фибробластов на патологические (качественно своеобразные или количественно избыточные) ЛП, с формированием в интиме фиброатером.

Причины развития атеросклероза:

1. Гиперхолестеринемия;

2. Гиперлипидемия ЛПОНП, ЛППП и ЛПНП (вызывают генетические дефекты рецепторов, апобелков, СД, гипотериоз, переедание).

3. Изменение нормальной структуры ЛПНП под действием ПОЛ и гипергликемии. Избыток глюкозы гликозилирует апобелки, повышенное ПОЛ (при гипоксии, воспалении) повреждает липиды и апобелки ЛП. Модифицированные ЛПНП становятся чужеродными для организма, атакуются антителами и поглощаются макрофагами с участием «скевенджер-рецепторов» (рецепторов-мусорщиков);

4. Повреждение сосудистой стенки высоким артериальным давлением (психоэмоциональные стрессы), ПОЛ (гипоксия, курение (через СО), воспаления), иммунными реакциями, токсинами и другими ядовитыми веществами (Pb, Cd). Повреждающие факторы разрыхляют и истончают (до исчезновения) гликокаликс энтероцитов, увеличивают межэндотелиальные щели, что создает на поверхности эндотелия зоны повышенной клейкости и проницаемости;

5. Принадлежность к мужскому полу (гормональный статус).

Молекулярные механизмы развития атеросклероза

Развитие атеросклероза проходит в 6 стадий:

1. Стадия измененного эндотелия. На поверхности поврежденного эндотелия скапливаются тромбоциты и моноциты. Модифицированные ЛПНП проникают под поврежденный эндотелий сосудов. За ними направляются моноциты (в ткани они макрофаги) и захватывают ЛП через скевенджер-рецепторы. Этот процесс не ингибируется избытком ХС, поэтому макрофаги перегружаются ХС и превращаются в «пенистые клетки». Отдельные «пенистые клетки» есть у новорожденных.

2. Стадия жировых полосок. При увеличении количества «пенистых клеток» они образуют липидные полоски. «Пенистые» клетки адсорбируют все остальные липиды без разбора. Поврежденный эндотелий, активированные макрофаги, тромбоциты выделяют БАВ, которые стимулируют пролиферацию ГМК и миграцию их в очаг повреждения.

3. Стадия переходная. Активированные ГМК синтезируют коллаген и эластин, что приводит к прорастанию бляшки фиброзной тканью. Клетки под фиброзной оболочкой некротизируются, а ХС начинает откладываться в межклеточном пространстве. Может происходить разрыв эндотелия сосудов.

4. Стадия атеромы. ХС межклеточного пространства формирует в центре бляшки липидную каплю – атерому, которая через разрушенный эндотелий выступает в просвет сосуда.

5. Стадия фиброатеромы. Атерома пропитываясь солями кальция, белками, ГАГ и приобретает плотную фиброзную крышку. Атерома становиться фиброатеромой.

6. Стадия осложнения фиброатеромы. Фиброатерома не стабильна, она может надрываться и изъявляться, что приводит к обострению атеросклероза.

Осложнения. Поврежденный эндотелий прекращает синтез PGI2, который в норме ингибирует тромбоциты. Тромбоциты активируются и секретируют тромбоксан ТХА2 и тромбоцитарный фактор роста (пептид). Тромбоцитарный фактор роста привлекает в бляшку клетки крови, ГМК, что способствует росту бляшки и развитию очага воспаления. ТХА2 → агрегацию тромбоцитов → образование тромбов → закупорка сосудов → ишемия тканей → некроз тканей → изъявления стенок сосудов → кровотечения, аневризмы. Оторвавшиеся тромбы → эмболии сосудов.

Чаще всего атеросклероз развивается в коронарных, мозговых, почечных артериях, артериях нижних конечностей и в аорте. Атеросклероз коронарных артерий проявляется ИБС, мозговых – ИБ мозга, почек – вазоренальной артериальной гипертензией. Спазм или тромбоз коронарных сосудов ведет к инфаркту миокарда, эмболия сонных артерий ведет к развитию инсультов.

Смертность от последствий атеросклероза (инфаркт миокарда, инсульт) лидирует в общей структуре смертности населения.

Биохимические основы лечения атеросклероза

Лечение гиперхолестеролемии, как правило, комплексное.

I Диета. Необходимо употреблять:

1) продукты гипокалорийные, гипохолестериные, с низким содержанием легкоусвояемых углеводов (растительная пища). Поступление ХС с пищей не должно превышать 0,3 мг/сут;

2) полиеновые ЖК семейства ω-3 (морепродукты). Из них синтезируются простагландины, подавляющие тромбообразование и замедляют развитие атеросклеротической бляшки. Ненасыщенные ЖК также ускоряют выведение ХС из организма (механизм не ясен);

3) витамины С, Е, А и другие антиоксиданты ингибирующие ПОЛ и поддерживающие нормальную структуру ЛПНП и их метаболизм.

Липримал дает самый сильный эффект

II. «Размыкание» цикла энтерогепатической циркуляции жёлчных кислот. Лекарства типа холестирамина, холестипол (полимеры) адсорбируют в кишечнике жёлчные кислоты, выделяются с фекалиями и таким образом уменьшают возврат жёлчных кислот в печень. В печени увеличивается захват ХС из крови для синтеза новых жёлчных кислот.

III. Ингибирование синтеза ХС. Наиболее эффективные препараты для лечения атеросклероза — ингибиторы ГМГ-КоА-редуктазы, например антибиотик мевакор. Такие препараты могут почти полностью подавить синтез ХС в организме, нормализуя уровень ХС.

IV. Активация катаболизма ЛП. Лекарственные препараты — фибраты (клофибрат, фенофибрат) активируют ЛПЛ и ускоряют катаболизм ЛПОНП. Эти препараты также активируют окисление ЖК в печени, уменьшая тем самым синтез ТГ и ЭХС и, как следствие, секрецию ЛПОНП печенью.

Для эффективного лечения атеросклероза применяют, как правило, комбинированное воздействие нескольких лекарственных препаратов.


 

 
 
 
 
 

 

 

Берсенёв Алексей Вячеславович диссертация

По современным представлениям атеросклероз – это хроническая системная воспалительная реакция организма, развивающаяся на фоне дислипидемии и сопровождающаяся образованием одиночных или множественных очагов липидных отложений (атероматозных бляшек) на внутренней поверхности сосудов [134].

Полагают, что именно системная воспалительная реакция способствует развитию дислипидемии (ДЛП) и запускает процесс атерогенеза [33,53]. В свою очередь алиментарные и наследственные ДЛП также индуцируют проявления синдрома системного воспалительного ответа и усугубляют тяжесть атеросклеротического поражения сосудов в организме [12,13,18,22,43].

В присутствии провоспалительных факторов, таких как окисленные ЛП (в особенности низкой и очень низкой плотности) [16,18,43], инфекционные агенты [33,53] и различные неспецифические стресс-факторы, в организме активируется макрофагально-моноцитарная система и усиливается выработка провоспалительных цитокинов (интерлейкинов: IL-1, 6, фактора некроза опухоли: TNF-α и др.). Эти цитокины, с одной стороны, вызывают в сосудистом эндотелии экспрессию молекул адгезии – ICAM-1, ICAM-2 (intracellular adhesion molecules), VCAM-1 (vascular cell adhesion molecules), селектины и др. и нарушают структуру эндотелиальной выстилки сосудов, а с другой вызывают экспрессию в гепатоцитах генов, ответственных за синтез в печени острофазных белков. Участие печени в острофазном процессе и, следовательно, в инициации и модуляции системной воспалительной реакции организма [66,134], смещает в ней баланс биохимических механизмов, что вызывает прежде всего, нарушения липидного обмена, поскольку печень играет центральную роль в регуляции этого вида обмена в организме.

Длительно поддерживаемая в организме активация макрофагально-моноцитарной системы из адаптивной постепенно превращается в повреждающую, при которой не только нарушается регуляция печенью липидного обмена, но и создаются условия для прогрессирования ДЛП и атеросклероза, а также для развития их осложнений [12,13,22].

При ДЛП и атеросклерозе клетками-мишенями (при системной воспалительной реакции) являются, прежде всего, клетки печени – гепатоциты, купферовские клетки, эндотелиоциты, а также эндотелиальная выстилка сосудов [16,17], изменения в которых развиваются параллельно, постепенно прогрессируют, ведут к формированию хронического гепатита [17], а также к типичному повреждению сосудистой стенки атеросклеротическим процессом.

ЖЕЛЧЕКАМЕННАЯ БОЛЕЗНЬ

Желчнокаменная болезнь — патологический процесс, при котором в жёлчном пузыре образуются камни, основу которых составляет ХС.

Выделение ХС в жёлчь должно сопровождаться пропорциональным выделением жёлчных кислот и фосфолипидов, удерживающих гидрофобные молекулы ХС в жёлчи в мицеллярном состоянии.

Если активность ГМГ-КоА-редуктазы повышена, а активность 7-а-гидроксилазы снижена - ХС синтезируется много, а жёлчных кислот мало. Это приводит к диспропорции ХС и жёлчных кислот, секретируемых в жёлчь. ХС начинает осаждаться в жёлчном пузыре, образуя вначале вязкий осадок, который постепенно становится более твёрдым. Иногда он пропитывается билирубином, белками и солями кальция. Камни, образующиеся в жёлчном пузыре, могут состоять только из ХС (холестериновые камни) или из смеси ХС, билирубина, белков и кальция.

Холестериновые камни обычно белого цвета, а смешанные камни — коричневого цвета разных оттенков.

Причин, приводящих к изменению соотношения жёлчных кислот и ХС, в жёлчи много: пища, богатая ХС, гиперкалорийное питание, застой жёлчи в жёлчном пузыре, нарушение энтерогепатической циркуляции, нарушения синтеза жёлчных кислот, инфекции жёлчного пузыря.

Если камни начинают перемещаться из жёлчного пузыря в жёлчные протоки, то они вызывают спазм жёлчного пузыря и протоков, что больной ощущает как приступ сильной боли. Если камень перекрывает проток некоторое время, то нарушается поступление жёлчи в кишечник, жёлчные пигменты проходят через мембраны гепатоцитов в сторону синусоидов и попадают в кровь, что приводит к развитию обтурационной (подпечёночной желтухи).

Лечение желчнокаменной болезни

В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолевую кислоту. Попадая в жёлчный пузырь, эта жёлчная кислота постепенно растворяет осадок ХС (холестериновые камни), однако это медленный процесс, требующий нескольких месяцев.

Список литературы

Берсенёв Алексей Вячеславович. Кандидатская диссертация: Трансплантация клеток эмбриональной печени и стволовых клеток костного мозга для коррекции дислипидемии и ранних стадий атерогенеза. М.: 2003.


– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ

Кафедра биохимии... КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ХОЛЕСТЕРИН

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

БИОЛОГИЧЕСКИЕ ФУНКЦИИ ЛИПИДОВ
В организме липиды выполняют разнообразные функции: 1) Структурная. Сложные липиды и холестерин амфифильны, они образуют все клеточные мембраны; фосфолипиды выстилают поверхность ал

ПРИНЦИПЫ НОРМИРОВАНИЯ ЛИПИДОВ В ПИТАНИИ
В сутки человеку требуется потреблять 80-100г липидов, из них 25-30г растительного масла, 30-50г сливочного масла и 20-30г жира животного происхождения. Потребность в пищевых липидах завис

ПЕРЕВАРИВАНИЕ ЛИПИДОВ
Переваривание – это гидролиз пищевых веществ до их ассимилируемых форм. Лишь 40-50% пищевых липидов расщепляется полностью, от 3% до 10% пищевых липидов всасываются в

Желудок
Так как «липаза языка» действует в диапазоне 2-7,5 рН, она может функционировать в желудке в течение 1-2 часов, расщепляя до 30% триглицеридов с короткими жирными кислотами. У грудных детей и детей

Тонкая кишка
Основной процесс переваривания липидов происходит в тонкой кишке. 1. Эмульгированиелипидов (смешивание липидов с водой) происходит в тонкой кишке под действием желчи.

Мицеллообразование
Водонерастворимые продукты гидролиза (жирные кислоты с длинной цепью, 2-МГ, холестерол, лизолецитины, фосфолипиды) вместе с компонентами желчи (солями жёлчных кислот, ХС, ФЛ) образуют в просвете ки

ВСАСЫВАНИЕ ПРОДУКТОВ ГИДРОЛИЗА
1. Водорастворимые продукты гидролиза липидов всасываются в тонкой кишке без участия мицелл. Холин и этаноламин всасываются в виде ЦДФ производных, фосфорная кислота - в виде Na+ и K

Рециклирование компоненты желчи
Вместе с продуктами гидролиза всасываются компоненты желчи - соли жёлчных кислот, фосфолипиды, холестерин. Наиболее активно соли жёлчных кислот всасываются в подвздошной кишке. Жёлчные кислоты дале

НАРУШЕНИЯ ПЕРЕВАРИВАНИЯ И ВСАСЫВАНИЯ ЛИПИДОВ. СТЕАТОРЕЯ
Нарушение переваривания липидов может быть при: 1) нарушение оттока жёлчи из жёлчного пузыря (желчекаменная болезнь, опухоль). Уменьшение секреции жёлчи вызывает нарушение эмульгирования л

ОБМЕН ЛИПИДОВ В ЭНТЕРОЦИТАХ
Липиды поступают в энтероциты как из просвета кишечника, так и из тканей. Большая часть липидов, поступивших в энтероцит, подвергается ресинтезу. 1. 1-МГ гидролизуется

Моноацилглицероловый путь синтеза ТГ и ФЛ
При ресинтезе ТГ Ацил~КоА с участием ацилтрансферазы этерифицирует 2-МГ до ДГ, а затем до ТГ: 2-МГ + Ацил~КоА → 1,2-ДГ + HS-КоА, 1,2-ДГ + Ацил~КоА → ТГ + H

Обмен липопротеинов
Липопротеины (ЛП) – это надмолекулярные комплексы сферической формы, состоящие из липидов, белков и углеводов. ЛП имеют гидрофильную оболочку и гидрофобное ядро. В гидрофильную

Основные виды липопротеинов
Состав, % ХМ ЛПОНП (пре-β-ЛП) ЛППП (пре-β-ЛП) ЛПНП (β-ЛП) ЛПВП (α-ЛП)

Апобелки
Белки, входящие в состав ЛП, называются апопротеины (апобелки, апо). К наиболее распространенным апопротеинам относят: апо А-I, А-II, В-48, В-100, С-I, С-II, С-III, D, Е. Ап

Ферменты транспорта липидов
Липопротеинлипаза(ЛПЛ) (КФ 3.1.1.34, ген LPL, около 40 дефектных аллелей) связана с гепарансульфатом, находящимся на поверхности эндотелиальных клеток капилляров кровеносных со

Рецепторы транспорта липидов
Рецептор ЛПНП — сложный белок, состоящий из 5 доменов и содержащий углеводную часть. Рецептор ЛПНП взаимодействует с белками ano B-100 и апо Е, хорошо связывает ЛПНП, хуже ЛППП

НОРМАЛЬНЫЕ ЗНАЧЕНИЯ
В соответствии c рекомендациями ASSMANN в настоящее время следующие значения холестерина ЛПВП могут быть предложены как основополагающие для оценки риска развития атеросклероза:

ОБМЕН ХИЛОМИКРОНОВ
Липиды, ресинтезированные в энтероцитах, транспортируется тканям в составе ХМ. · Образование ХМ начинается с синтеза апо В-48 на рибосомах. Апо В-48 и В-100 имеют общий ген. Если с гена ко

Абеталипопротеинемия (синдром Бассена-Корнцвейга)
При наследственном дефекте гена апо В — нарушается синтез апо В-100 в печени и апо В-48 в кишечнике. В результате в энтероцитах не формируются ХМ, а в печени — ЛПОНП. В клетках этих органов накапли

Семейная гиперхолестеролемия (гиперлипопротеинемия типа IIа и IIв)
Наследственный дефект рецептора ЛПНП (к апо В/Е) (или белка апоВ-100) приводит к развитию распространённого наследственного заболевания — семейной гиперхолестеролемии. При дефекте рецептор

ОБМЕН ЛПВП
ЛПВП выполняют 2 основные функции: они поставляют апо другим ЛП в крови и участвуют в так называемом «обратном транспорте ХС». ЛПВП синтезируются в печени и в небольшом количестве в тонком кишечник

НАРУШЕНИЯ ЛПВП
Болезнь Тэнжи Болеют аборигены острова Тэнжи. Наследственный дефект апо А, не синтезируются ЛПВП. Нарушается транспорт излишков ХС из тканей в печень. В крови низкий уровень ХС, ФЛ, много

ЛЕКЦИЯ № 13
Тема: Белая и бурая жировая ткань. Липолиз и липогенез. Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.  

Развитие жировой ткани
Жировая ткань развивается из мезенхимы с 30 нед

Строение жирных кислот
Жирными кислотами (ЖК) - называются карбоновые кислоты, которые образуются при гидролизе омыляемых липидов. В основном к жирным кислотам относятся высшие карбоновые ки

КАТАБОЛИЗМ ЖИРНЫХ КИСЛОТ
В живых организмах катаболизм ЖК протекает как в ферментативных так и в неферментативных реакциях. · Ферментативный катаболизм ЖК происходит

Активация ЖК
Активация ЖК происходит в результате образования макроэргической связи между ЖК и HSКоА с образованием Ацил-КоА. Реакцию катализирует фермент Ацил-КоА синтетаза: RCOOH + HSKoA + АТФ →

Транспорт ЖК
Транспорт ЖК в матрикс митохондрий зависит от длины углеродной цепи. ЖК с короткой и средней длиной цепи (от 4 до 12 атомов С) могут проникать в матрикс митохондрий путём диффузии. Активац

С четным количеством атомов углерода
При активации ЖК затрачивается 2 макроэргической связи АТФ. При окислении насыщенной ЖК с четным количеством атомов С образуются только ФАДН2, НАДН2 и Ацетил-КоА.

С нечетным количеством атомов углерода
β-окисление насыщенной ЖК с нечетным количеством атомов С в начале идет также как и с четным. На активацию затрачивается 2 макроэргической связи АТФ. ЖК с 17 атомами С проходит при &#

С четным количеством атомов углерода
Около половины ЖК в организме человека ненасыщенные. β-окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между 3 и 4 атомами С. Затем фермент еноил-КоА изомер

Окисление ЖК в пероксисомах
В пероксисомах β-окисления ЖК протекает в модифицированной форме. Этот путь обеспечивает катаболизм в печени длинноцепочечных ЖК (С=20, 22). Продуктами окисления является актоноил-КоА, Ацетил-

Нарушения окисления ЖК
1) Нарушение β-окисления возникает при снижении транспорта ЖК в митохондрии. Скорость переноса ЖК внутрь митохондрий зависит от доступности карнитина и активности карнитинацил

Перекисное окисление липидов
Понятие ПОЛ объединяет все реакции неферментативного окисления полиненасыщенных ЖК, свободных или входящих в состав омыляемых липидов, протекающих по радикальному механизму.

Регуляция ПОЛ
Процессы ПОЛ усиливаются при избытке катехоламинов (стресс), гипоксии, ишемии (при реоксигенации), повышенном содержании активных форм О2, снижении антиоксидантной защиты, повышенном сод

АНАБОЛИЗМ ЖИРНЫХ КИСЛОТ
Источником ЖК в организме являются синтетические процессы и пища. ЖК, которые синтезируются в организме, называются заменимыми. Значительная их часть образуется в п

Образование субстратов, необходимых для синтеза ЖК
Образование и транспорт Ацетил-КоА. В реакциях гликолиза из глюкозы образуется ПВК, который поступает в матрикс митохондрий и превращается в Ацетил-КоА с участием ПВК ДГ. Так как внутренняя

Синтез ЖК из пальмитиновой и других ЖК
Удлинение ЖК в элонгазных реакциях Удлинение ЖК называется элонгацией. ЖК могут синтезироваться в результате удлинение в ЭПР пальмитиновой кислоты и других более длинных ЖК. Для ка

Биологическое значение эйкозаноидов
Эйкозаноиды регулируют тонус ГМК и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные т

Синтез КТ
β-оксибутират и ацетоацетат синтезируются в митохондриях печени из ЖК. Ацетон образуется в крови неферментативно:

Регуляция синтеза КТ
Глюкагон в жировой ткани активируется распад ТГ. ЖК поступают в печень в большем количестве, чем в норме, что увеличивает скорость их β-окисления. Глюкаго

Окисление КТ в периферических тканях
Как и ЖК, КТ окисляются только в аэробных условиях, обеспечивая синтез АТФ.

Биологическая роль КТ
КТ — хорошие топливные молекулы, окисление β-гидроксибутирата до СО2 и Н2О обеспечивает быстрый синтез 26 молекул АТФ. Окисление КТ, как и ЖК сберегает глюкозу, что имеет

Кетоацидоз
В норме концентрация КТ в крови составляет 1—3 мг/дл (до 0,2 мМоль/л), но при голодании значительно увеличивается. Увеличение концентрации КТ в крови называют кетонемией. Пр

Инсулин
Основным гормоном, стимулирующим синтез липидов, является инсулин. Инсулин ускоряет транспорт глюкозы в адипоциты. Инсулин стимулирует образование необходимых для синтеза липидов

Контринсулярные гормоны
Контринсулярные гормоны: глюкагон, высокая концентрация адреналина (через β-рецепторы: β1, β2, β3), АКТГ, ТТГ, нейропептид Y че

ЛИПОСТАТ
Липостат(массостат) — условное название системы, контролирующей постоянство веса тела. Липостат обеспечивается работой пищевого центра — сложного гипоталамо-лимбико-ретикуло-ко

Взаимосвязь ЖКТ и гипоталамуса
- При приеме пищи выделяются кишечные гормоны энтериновой системы, которые ингибируют центр голода гипоталамуса: - Сильными ингибиторами чувства голода, аппетита и пищевой активности служи

Кахексин (ФНО-a)
a-фактор некроза опухолей (a-ФНО) пептид, синтезируется в адипоцитах, мышцах. Синтез a-ФНО стимулирует накопление ТГ в адипоцитах. Концентрация a-ФНО в сыворотке крови составляет 90 ± 10 пг/мл.

Клеточный (метаболический) уровень регуляции липидного обмена
Метаболический уровень регуляции липидного обмена осуществляется с участием метаболитов – субстратов, продуктов и других БАВ. Избыток субстратов стимулирует их использование, а продукты ингибируют

НАРУШЕНИЯ ЛИПИДНОГО ОБМЕНА. ОЖИРЕНИЕ
В норме жировая ткань составляет 20—25% от общей массы тела у женщин и 15-20% у мужчин. Образование адипоцитов начинается у плода на последнем триместре беременности, и в норме заканчивается у ребе

Генетические факторы ожирения
Предполагают наличие генетически детерминированного более эффективного метаболизма. Организм меньше тратит АТФ и соответственно больше экономит углеводы и липиды. Например, экономия АТФ происходит

Физическая активность
Суточные потребности организма в энергии складываются из: а) основного обмена — энергии, необходимой для поддержания жизни (основной обмен измеряют по поглощению О2

Роль лептина в регуляции массы жировой ткани
Нарушение обмена лептина, по аналогии с инсулином, приводит к развитию абсолютной (20% случаев) или относительной (80% случаев) лептиновой недостаточности. Абсолютная лептиновая не

Принципы лечения и профилактики ожирения
Единственный способ коррекции первичного ожирения - ограничение калорийности пищи и усиление физической активности. Лечение основного заболевания при вторичном ожирении позволяет добиться снижения

Кахексия
Кахексия (cachexia; греч. kachexia плохое состояние; синоним атрофия общая) — крайняя степень истощения организма, характеризующаяся резким исхуданием, общей слабостью, снижени

А-a-липопротеидемия (Болезнь Танжи)
Основное изменение в ЛП крови: отсутствие ЛПВП нормаль­ного состава. Причина болезни Танжи - высокая скорость катаболизма ЛПВП и апо A-I и A-II. У гетерозиготных больных скорость деградаци

Абеталипопротеидемия
Синонимы: синдром Bassen и Kornzweig, акантоцитоз. Причиной развития абеталипопротеидемии считается нарушение образования апо В клетками слизис­той оболочки кишечника и печени. Характерной

B-липопротеинемия
b-Липопротеинемия (гипербетапротеинемия)-заболевание, связанное с повышением уровня концентрации ЛПНП (при гиперпротеинемии IIa типа) и ЛПОНП (при гиперпротеинемии IIб типа) в плазме крови. Оно отн

Хиломикронемия
Семейная хиломикронемия (СХ) встречается крайне редко и характеризуется повышением уровня циркулирующих ХМ, которые сохраняются в плазме крови спустя 12 ч голодания. Диагностические лаб

Гипобеталипопротеидемия
Основное изменение в содержании ЛП крови: пониженное содержание ЛПНП. Диагностические лабораторные показатели: 1. Плазма крови прозрачная. 2. Содержание ХС ЛПНП не

Критерии ожирения.
Критерии ожирениятрудно поддаются унификации. Если прежде при антропо­метрии ориентировались на весоростовое соотношение и формулу идеального веса Брока (рост минус 100), а также на измере­ние подк

Вторичное ожирение.
Вторичное ожирение — синдром, возни­кающий при наличии в организме каких-либо расстройств, усиливающих запасание и ослабляющих темпы расходования тригли­церидов, на фоне изначально нормальны

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги