рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Карбонильные соединения в биоорганической химии. Строение, химические свойства, медикобиологическое значение альдегидов и кетонов.

Карбонильные соединения в биоорганической химии. Строение, химические свойства, медикобиологическое значение альдегидов и кетонов. - раздел Биология, Биологически активные вещества растительного происхождения Карбонильные Соединения Содержат Карбонильную Группу С=О. Од...

Карбонильные соединения содержат карбонильную группу С=О. Один из наиб. распространенных типов неорг. и орг. в-в. К ним относятся, напр., СО, СО2, карбонаты, мочевина. Однако под карбонильными соединениями в узком смысле понимают лишь альдегиды и кетоны, а также (в меньшей степени) карбоновые кислоты и их производные. Карбонильные соединения высоко реакционноспособны. Группа С=О способна восстанавливаться до спиртовой или метиленовой группы. Из-за наличия частичного положит. заряда на атоме С карбонильные соединения присоединяют разл. нуклеофилы, напр., амины, металлоорг. соед., вступают в р-ции электроф. замещения в ароматич. кольце. Р-ции с нуклеофилами часто сопровождаются дальнейшим отщеплением воды с образованием производных карбонильных соединений, напр., гидразонов, шиффовых оснований. Если группа С=О связана с гетероатомом, несущим неподеленную пару электронов, напр., в карбоновых к-тах и их производных, то р-ции по этой группе с нуклеофилами могут затрудняться, а с электрофилами (к-тами) облегчаться. Благодаря подвижности атомов Н у соседнего с карбонильной группой атома С (a-С-атома) карбонильные соединения сравнительно легко, в особенности при катализе к-тами или основаниями, переходят в енольную форму Енолизация или образованиеенолят-аниона первая стадия мн. важных р-ций карбонильных соединений, где они выступают в качестве С-нуклеофильных реагентов. К таким р-циям относятся галогенирование по a-С-атому, альдольная и кретоновая конденсации, присоединение к активир. кратным связям (реакция Михаэля ) и др.

У альдегидов карбонильный углерод соединен с атомом Н и органической группой R (общая формула RHC=O)

Применение альдегидов в медицине.

Формальдегид (формалин).Применяют как дезинфицирующее и дезодорирующее средство для мытья рук, обмывания кожи при повышенной потливости (0,5-1 %), для дезинфекции инструментов (0,5 %), для спринцеваний (1:2000 - 1:3000). Входит в состав лизоформа.

Формидрон - жидкость, содержащая раствора формальдегида 10 частей, спирта этилового 95 % 40 частей, воды 50 частей, одеколона 0,5 частей. Применяют для протирания кожи при повышенной потливости.

Мазь формальдегидная. Применяют при повышенной потливости, втирают в подмышечняю впадины один раз в сутки, в межпальцевые складки.

Лизоформ мыльный раствор формальдегида. Состав: формалина 40 частей, мыла калийного 40 частей, спирта 20 частей. Оказывает дезинфицирующее и дезодорирующее действие. Применяют для спринцевания в гинекологической практике, для дезинфекции рук (1-3 % растворы).

Уротропин (гексаметилентетрамин), бесцветные кристаллы без запаха, легко растворимы в воде. Водные растворы имеют щелочную реакцию. Применяют главным образом при инфекционных процессах мочевыводящих путей (циститах, пиелитах)

Кетоны — органические соединения общей формулы R—CO—R (где R — углеводородные радикалы, например СН3—, СН3 — СН2— и т. д.). Низшие кетоны — жидкости с характерным запахом, например ацетон (СН3)2CO, высшие — твердые вещества, например камфора. К классу кетонов относятся также стероидные гормоны (эстрон, кортизон и др.), многие из которых применяются в медицине в разных целях.

12. Карбоновые кислоты в биоорганической химии. Строение, химические свойства. Функциональные производные карбоновых кислот: ангидриды, амиды, сложные эфиры. Реакции декарбоксилирования.

Карбо́новые кисло́ты — класс органических соединений, молекулы которых содержат одну или несколько функциональных карбоксильных групп -COOH. Кислые свойства объясняются тем, что данная группа может сравнительно легко отщеплять протон. За редкими исключениями карбоновые кислоты являются слабыми. Например, у уксусной кислоты CH3COOH константа кислотности равна 1,75·10−5. Ди- и трикарбоновые кислоты более сильные, чем монокарбоновые

В зависимости от радикала, связанного с карбоксилом, различают следующие группы карбоновых кислот:

· ароматические

· алифатические (в том числе предельные и непредельные)

· алициклические

· гетероциклические.

По числу карбоксильных групп кислоты могут быть одно-, двух- и многоосновными. При введении в молекулы кислоты других функциональных групп (например, -ОН, =CO, -NH2 и др.) образуются окси-, кето-, аминокислоты и другие классы соединений. Эти соединения вступают в те же реакции, что и карбоновые кислоты, плюс ко всему протекают реакции и по замещенной группе.

Наиболее важные химические свойства, характерные для большинства карбоновых кислот:
1. Карбоновые кислоты при реакции с металлами, их оксидами или их осно́вными гидроксидами дают соли соответствующих металлов:

2. Карбоновые кислоты могут вытеснять более слабую кислоту из её соли, например:

3. Карбоновые кислоты в присутствии кислого катализатора реагируют со спиртами, образуя сложные эфиры (реакция этерификации):

4. При нагревании аммонийных солей карбоновых кислот образуются их амиды:

5. Под действием карбоновые кислоты превращаются в соответствующие хлорангидриды:

13. Строение и свойства дикарбоновых кислот.

Дикарбоновыекислоты, орг. соед., содержащие две карбоксильные группы СООН. Называют их аналогично карбоновым кислотам; многие дикарбоновые кислоты имеют тривиальные назв., которые, как правило, и используются (см. табл.). Дикарбоновые кислоты- кристаллич. в-ва. Т-ры плавления алифатич. дикарбоновых кислот с четным числом атомов С значительно выше, а р-римость в воде меньше, чем соответствующие показатели соседних нечетных гомологов. Первая константа диссоциации дикарбоновых кислот выше, чем соответствующих монокарбоновых к-т, что особенно заметно у низших гомологов.

Дикарбоновые кислоты проявляют все св-ва карбоновых к-т, образуя как моно-, так и дипроизводные. Взаимное влияние и взаимод. двух карбоксильных групп вызывает ряд р-ций, характерных только для дикарбоновых кислот. При нагр. низшие алифатич. дикарбоновые кислоты (щавелевая, малоновая) легко декарбоксилируются; к-ты, содержащие 2-3 атома С между карбоксилами, при нагр. или при действии дегидратирующих агентов образуют циклич. ангидриды, а высшие дикарбоновые кислоты - полимерные ангидриды. Образование циклич. продуктов характерно и для производных дикарбоновых кислот, напр., эфиров, дающих эфиры циклич. b-кетокислот (а)и восстанавливающихся в циклич. ацилоины (б):

– Конец работы –

Эта тема принадлежит разделу:

Биологически активные вещества растительного происхождения

Биоорганическая химия наука которая изучает связь между строением органических веществ и их биологическими функциями Как самостоятельная наука... Методы Основной арсенал составляют методы органической химии для решения... Объекты изучения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Карбонильные соединения в биоорганической химии. Строение, химические свойства, медикобиологическое значение альдегидов и кетонов.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пространственная (стереоизомерия)
Пространственная изомерия обусловлена различным пространственным расположением атомов при одинаковом порядке их связывания. Различают: 1) геометричекую (цис-, транс-изомерию)

Углеводороды. Строение, химические свойства.
Углеводоро́ды — органические соединения, состоящие исключительно из атомов углерода и водорода. Углеводороды считаются базовыми соединениями органической химии, все остальные

Спирты. Тиоспирты. Фенолы. Строение, химические свойства. Применение в медицине.
Спирты́ — органические соединения, содержащие одну или более гидроксильных групп (гидроксил, −OH), непосредственно связанных с насыщенным (находящемся в

Применение спиртов в медицине
Основным спиртом, применяющимся в медицинских целях, является этанол. Его используют в качестве наружного антисептического и раздражающего средства для приготовления компрессов и обтираний. Ещё бол

Гирокси-, оксо-, фенолокислоты. Строение, свойства. Биологическая роль, применение в медицине.
Оксикислоты (оксикарбоновые кислоты, гидроксикарбоновые кислоты) — карбоновые кислоты, в которых одновременно содержатся карбоксильная и гидроксильная группы, наприме

Аминоспирты. Строение, свойства. Биологическое значение этаноламина (коламина), холина, ацетилхолина, сфингозина
Аминоспирты, аминоалкоголи — алифатические органические соединения, содержащие —NH2 и —ОН группы у разных атомов углерода в молекуле. Низшие аминоспирты представляют соб

Гетерополисахариды. Строение и биологическая роль гиалуроновой кислоты, хондроитинсульфатов, гепарина.
В том случае, когда полисахарид составлен из моносахаридов двух видов или более, регулярно или нерегулярно чередующихся в молекуле, его относят к гетерополисахаридам. Гиалур

Энергетическая (резервная) функция
Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г

Функция теплоизоляции
Жир — хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных

Сложные липиды. Фосфолипиды. Сфинголипиды. Гликолипиды. Строение, биологическая роль.
Сложные липиды содержатся почти во всех клетках человеческого и животного организма, в особенности их много в клетках нервной ткани. Сложные липиды, в зависимости от гетероатомов в их составе, подр

Неомыляемые липиды. Холестерин. Строение, биороль. Стероидные гормоны
Липиды обладают способностью к гидролизу в кислой и щелочной среде. Поскольку в результате гидролиза в щелочной среде образуются соли высших карбоновых кислот, т. е. мыла, то сами липиды принято на

Нуклеозиды, нуклеотиды. Азотистые основания пиримидинового и пуринового ряда. Лактим-лактамная таутомерия.
Нуклеозиды— это гликозиламины[ru], содержащие азотистое основание, связанное с сахаром(рибозой или дезоксирибозой). Нуклеозиды могут быть фосфорилированы киназа

По функциональным группам
· Алифатические · Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин · Оксимоноаминокарбоновые: серин, треонин · Моноаминодикарбоновые: аспартат, глутамат,

По способности организма синтезировать из предшественников
· Незаменимые валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан, аргинин,гистидин. · Заменимые глицин, аланин, пролин, серин, цистеин, аспартат,

РЕАКЦИЯ ПИОТРОВСКОГО (БИУРЕТОВАЯ РЕАКЦИЯ)
В белках аминокислоты связаны друг с другом по типу полипептидов и дикетопиперазинов. Образование полипептидов из аминокислот происходит путем отщепления молекулы воды от аминогруппы одной молекулы

РЕАКЦИЯ РУЭМАННА (НИНГИДРИНОВАЯ РЕАКЦИЯ (1911))
a-Аминокислоты реагируют с нингидрином, образуя сине-фиолетовый комплекс (пурпур Руэманна), интенсивность окраски которого пропорциональна количеству аминокислоты. Реакция идет по схеме:

РЕАКЦИЯ ФОЛЯ
Это реакция на цистеин и цистин. При щелочном гидролизе «слабосвязанная сера» в цистеине и цистине достаточно легко отщепляется, в результате чего образуется сероводород, который, реагируя со щелоч

РЕАКЦИЯ С ФОРМАЛЬДЕГИДОМ
При взаимодействии a-аминокислот с формальдегидом образуются относительно устойчивые карбиноламины – N-метилольные производные, содержащие свободную карбоксильную группу, которую затем титруют щело

ОБРАЗОВАНИЕ КОМПЛЕКСОВ С МЕТАЛЛАМИ
a-Аминокислоты образуют с катионами тяжелых металлов внутрикомплексные соли. Со свежеприготовленным гидроксидом меди(II) все a-аминокислоты в мягких условиях дают хорошо кристаллизующиеся внутриком

КСАНТОПРОТЕИНОВАЯ РЕАКЦИЯ
Эта реакция используется для обнаружения a-аминокислот, содержащих ароматические радикалы. Тирозин, триптофан, фенилаланин при взаимодействии с концентрированной азотной кислотой образуют нитропрои

Первичная структура
Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичная структура (последовательность аминокислотных остатков) полипептида определяется структурой его гена

Вторичная структура
Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков

Третичная структура
Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные вз

Четвертичная структура
Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четве

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги