рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Другие специальные методы электронной микроскопии биологических объектов

Другие специальные методы электронной микроскопии биологических объектов - раздел Биология, ЧАСТЬ I. Введение. Предмет клеточной биологии ГЛАВА 1. Клеточная теория В Последнее Время Начинают Применять Методы Высоковольтной (...

В последнее время начинают применять методы высоковольтной (вернее, сверхвысоковольтной) микроскопии. Сконструированы приборы с ускоряющим напряжением 1-3 млн. вольт. Это очень дорогие приборы, что сдерживает их широкое применение. Преимущество этого класса электронных микроскопов не в том, что на них можно получить более высокое разрешение (при более короткой длине волны электронов), а в том, что при высокой энергии электронов, которые меньше поглощаются объектом, можно просматривать образцы большой толщины (1-10 мкм). Дополнительное использование стереоскопической съемки позволяет получить информацию о трехмерной организации внутриклеточных структур с высоким их разрешением (около 0,5 нм).

Метод сканирующей (растровой) электронной микроскопии позволяет изучать трехмерную картину поверхности клетки. При сканирующей электронной микроскопии тонкий пучок электронов (зонд) пробегает по поверхности объекта и полученная информация передается на электронно-лучевую трубку. Изображение может быть получено в отраженных или вторичных электронах. При этом методе фиксированный и специальным образом высушенный объект покрывается тонким слоем испаренного металла (чаще всего золота), отражаясь от которого электроны попадают в приемное устройство, передающее сигнал на электронно-лучевую трубку. Благодаря огромной глубине фокуса сканирующего микроскопа, которая значительно больше, чем у просвечивающего, получается почти трехмерное изображение исследуемой поверхности. Разрешающая способность этого типа приборов несколько ниже, чем у просвечивающих электронных микроскопов, но уже сейчас выпускаются приборы с разрешением 3-5 нм (рис. 13).

С помощью растровой электронной микроскопии можно получить информацию о химическом составе в тех или иных участках клеток. Так, метод рентгеноспектрального микроанализа основан на идентификации и количественной оценке содержания химических элементов по спектрам характеристического рентгеновского излучения, возникающего при взаимодействии первичных электронов с атомами объекта. Для получения такой информации, конечно, объекты не следует покрывать слоем металла, как при обычном методе сканирующей электронной микроскопии. Более того, объект нужно подготовить так, чтобы не было потери или дополнительного внесения элементов. Для этого используют быстро замороженные и высушенные в вакууме объекты.

Фракционирование клеток

В цитологии широко применяют различные методы биохимии, как аналитические, так и препаративные. В последнем случае можно получить в виде отдельных фракций разнообразные компоненты и изучать их химический состав, ультраструктуру и свойства. Так, в настоящее время в виде чистых фракций получают практически любые клеточные органеллы и структуры: ядра, ядрышки, хроматин, ядерные оболочки, плазматическую мембрану, вакуоли эндоплазматического ретикулума, его рибосомы, рибосомы гиалоплазмы, аппарат Гольджи, митохондрии, их мембраны, пластиды, пероксисомы, микротрубочки и т.д., и т.п. В последнее время получены чистые фракции центриолей и ядерных пор.

Получение клеточных фракций начинается с общего разрушения клетки, с ее гомогенизации. Затем из гомогенатов уже можно выделять фракции. Одним из основных способов выделения клеточных структур является дифференциальное (разделительное) центрифугирование. Принцип его применения в том, что время для осаждения частиц в гомогенате зависит от их размера и плотности: чем больше частица или чем она тяжелее, тем быстрее она осядет на дно пробирки. Чтобы ускорить этот процесс оседания, используют ускорения, создаваемые центрифугой. При центрифугировании раньше всего и при небольших (1-3 тыс. g)ускорениях осядут ядра и неразрушенные клетки, при 15-30 тыс. g осядут крупные частицы, макросомы, состоящие из митохондрий, мелких пластид, пероксисом, лизосом и др., при 50 тыс. g осядут микросомы, фрагменты вакуолярной системы клетки. При повторном дробном центрифугировании этих смешанных подфракций можно получить чистые фракции. Так, при разделении макросомной подфракции получают отдельно митохондрии, лизосомы, пероксисомы. При разделении микросом можно получить фракцию мембран аппарата Гольджи, фрагментов плазматической мембраны, вакуолей, гранулярного ретикулума. В случаях более тонкого разделения фракций используют центрифугирование в градиенте плотности сахарозы, что позволяет хорошо разделить компоненты, даже незначительно отличающиеся друг от друга по удельной массе.

Полученные фракции, прежде чем их анализировать биохимическими способами, необходимо проверить на чистоту с помощью электронного микроскопа.

Получение отдельных клеточных компонентов дает возможность изучать их биохимию и функциональные особенности. Так можно создать бесклеточную систему для рибосом, которые будут синтезировать белок по заданной экспериментатором информационной РНК, выделенные митохондрии в подобранных условиях могут осуществлять синтез АТФ, на выделенном хроматине при участии соответствующих ферментов может происходить синтез РНК и т.д.

В последнее время применяются бесклеточные системы для воссоздания клеточных надмолекулярных структур. Так, используя очищенные от гранул желтки, экстракты цитоплазмы яиц земноводных или яиц морских ежей, можно получить ядра с ядерной оболочкой из введенной в эту бесклеточную систему чужеродной ДНК (например ДНК бактериофага). Такая ДНК связывается с белками-гистонами, которые есть в избытке в таком экстракте, образуется хроматин (дезоксирибонуклеопротеид), который покрывается двойной мембранной оболочкой, несущей даже ядерные поры. Такие модельные системы помогают изучать тонкие, интимные процессы, например транспорт макромолекул из цитоплазмы в ядро и наоборот. В цитоплазматических экстрактах яиц земноводных и иглокожих такие ядра могут периодически делиться путем митоза. Эти модели внесли огромный вклад в расшифровку природы регуляции клеточного цикла.

Большой вклад в биологию клетки вносят методы клеточной инженерии. Было найдено, что различные живые клетки могут сливаться друг с другом, если специальными способами обработать их плазматические мембраны. Так можно слить эритроцит курицы и лимфоцит человека. При этом получается двуядерная клетка, гетерокарион, в котором происходит активация ядра куриного эритроцита (рис.14). Если гетерокарион образуется из близкородственных клеток (например, мыши и хомячки), то при вступлении их в митоз хромосомы могут объединиться в одну метафазную пластинку. После разделения такой клетки получится истинно гибридная клетка. Другие приемы позволяют конструировать клетки из разных по происхождению ядер и цитоплазмы (рис. 15). Так, разрушив актиновый компонент цитоскелета и подвергнув клетки центрифугированию можно клетку разделить на две части: ядро с узким ободком цитоплазмы – кариопласт и на оставшуюся часть цитоплазмы – цитопласт. Затем используя разные кариопласты и цитопласты, можно создавать разные комбинации реконструированных клеток.

Методы клеточной инженерии широко применяются не только в экспериментальной биологии, но и в биотехнологических целях. Например, при получении моноклональных антител используются клеточные гибриды между лимфоцитами иммунизированных животных и интенсивно размножающимися клетками миеломы. Полученные первичные дикарионы образуют истинные гибридные клетки, которые интенсивно размножаются за счет генома опухолевых миеломных клеток, и одновременно выделяют большое количество антител, за счет работы генома иммунизированных лимфоцитов. Этот прием позволяет получать большое число гибридомных клеток, вырабатывающих большие количества необходимых антител.

Нет необходимости приводить описание всех методов и приемов, используемых в цитологии для изучения строения, химии и функций клеток или их компонентов. Этого краткого обзора достаточно для того, чтобы показать богатство арсенала методов в цитологии, позволяющих давать точный анализ, начиная от формы, общего вида и размера клетки, кончая молекулярной композицией ее отдельных частей.

Часть II. Строение и химия клеточного ядра

Глава 3. Центральная догма молекулярной биологии

Клетка как таковая обладает огромным числом разнообразных функций, как мы уже говорили, часть из них – общеклеточные, часть – специальные, характерные для особых клеточных типов. Главными рабочими механизмами выполнения этих функций являются белки или их комплексы с другими биологическими макромолекулами, такими, как нуклеиновые кислоты, липиды и полисахариды. Так, известно, что процессы транспорта в клетке разнообразных веществ, начиная с ионов, кончая макромолекулами, определяются работой специальных белков или липопротеиновых комплексов в составе плазматической и иных клеточных мембран. Практически все процессы синтеза, распада, перестройки разных белков, нуклеиновых кислот, липидов, углеводов происходит в результате активности специфических для каждой отдельной реакции белков-ферментов. Синтезы отдельных биологических мономеров, нуклеотидов, аминокислот, жирных кислот, сахаров и др. также осуществляются огромным числом специфических ферментов – белков. Сокращение, приводящее к подвижности клеток или к перемещение веществ и структур внутри клеток, осуществляется также специальными сократительными белками. Многие реакции клеток в ответ на воздействие внешних факторов (вирусов, гормонов, чужеродных белков и др.) начинается с взаимодействия этих факторов со специальными клеточными белками-рецепторами.

Белки – это основные компоненты практически всех клеточных структур. Множество химических реакций внутри клетки определяется множеством ферментов, каждый из которых ведет одну или несколько отдельных реакций. Структура каждого отдельно взятого белка строго специфична, что выражается в специфичности их первичной структуры – в последовательности аминокислот вдоль полипептидной, белковой цепи. Причем специфичность этой аминокислотной последовательности безошибочно повторена во всех молекулах данного клеточного белка.

Такая правильность в воспроизведении однозначной последовательности аминокислот в белковой цепи детерминируется структурой ДНК того генного участка, который в конечном счете отвечает за структуру и синтез данного белка. Эти представления служат основным постулатом молекулярной биологии, ее «догмой». Информация о будущей молекуле белка передается в места его синтеза (в рибосомы) посредником – информационной РНК (иРНК), нуклеотидный состав которой отражает состав и последовательность нуклеотидов генного участка ДНК. В рибосоме строится полипептидная цепь, последовательность аминокислот в которой определяется последовательностью нуклеотидов в иРНК, последовательностью их триплетов. Тем самым центральная догма молекулярной биологии подчеркивает однонаправленность передачи информации: только от ДНК к белку, с помощью промежуточного звена, иРНК (ДНК ® иРНК ® белок). Для некоторых РНК-содержащих вирусов цепь передачи информации может идти по схеме РНК – иРНК – белок. Это не меняет сути дела, так как детерминирующим, определяющим звеном здесь является также нуклеиновая кислота. Обратные пути детерминации от белка к нуклеиновой кислоте, к ДНК или РНК неизвестны.

Для того чтобы в дальнейшем перейти к изучению структур клетки, связанных со всеми этапами синтеза белков, нам необходимо кратко остановиться на основных процессах и компонентах, определяющих это явление.

В настоящее время на основании современных представлений о биосинтезе белков можно дать следующую общую принципиальную схему этого сложного и многоступенчатого процесса (рис. 16).

Главная, «командная», роль в определении специфической структуры белков принадлежит дезоксирибонуклеиновой кислоте – ДНК. Молекула ДНК представляет собой чрезвычайно длинную линейную структуру, состоящую из двух взаимозакрученных полимерных цепей. Составными элементами – мономерами – этих цепей являются четыре сорта дезоксирибонуклеотидов, чередование или последовательность которых вдоль цепи уникальная и специфична для каждой молекулы ДНК и каждого ее участка. Различные достаточно длинные участки молекулы ДНК ответственны за синтез разных белков. Тем самым одна молекула ДНК может определить синтез большого числа функционально и химически различных белков клетки. За синтез каждого одного типа белков ответствен лишь определенный участок молекулы ДНК. Такой участок молекулы ДНК, связанный с синтезом одного какого-либо белка в клетке, часто обозначают термином «цистрон». В настоящее время понятие цистрон рассматривают как эквивалентное понятию ген. В уникальной структуре гена – в определенном последовательном расположении его нуклеотидов вдоль цепи – заключена вся информация о структуре одного соответствующего белка.

Из общей схемы белкового синтеза видно (см. рис. 16), что начальным пунктом, с которого начинается поток информации для биосинтеза белков в клетке, является ДНК. Следовательно, именно ДНК содержит ту первичную запись информации, которая должна сохраняться и воспроизводиться от клетки к клетке, из поколения в поколение.

Кратко касаясь вопроса о месте хранения генетической информации, т.е. о локализации ДНК в клетке, можно сказать следующее. Уже давно известно, что, в отличие от всех прочих компонентов белоксинтезирующего аппарата, ДНК имеет особую, весьма ограниченную локализацию: местом ее нахождения в клетках высших (эукариотических) организмов будет клеточное ядро. У низших (прокариотических)организмов, не имеющих оформленного клеточного ядра, ДНК также отмешана от остальной части протоплазмы в виде одного или нескольких компактных нуклеотидных образований. В полном соответствии с этим ядро эукариот или нуклеоид прокариот издавна рассматривается как вместилище генов, как уникальный клеточный органоид, контролирующий реализацию наследственных признаков организмов и их передачу в поколениях.

Основной принцип, лежащий в основе макромолекулярной структуры ДНК, - это так называемый принцип комплементарности (рис. 17). Как уже упоминалось, молекула ДНК состоит из двух взаимозакрученных цепей. Эти цепи связаны друг с другом посредством взаимодействия их противолежащих нуклеотидов. При этом по структурным соображениям существование такой двутяжной структуры оказывается возможным только в том случае, если противолежащие нуклеотиды обеих цепей будут стерически комплементарны, т.е. будут своей пространственной структурой дополнять друг друга. Такими взаимодополняющими – комплементарными – парами нуклеотидов являются пара А-Т (аденин-тимин) и пара Г-Ц (гуанин-цитозин).

Следовательно, согласно этому принципу комплементарности, если в одной цепи молекулы ДНК мы имеем некую последовательность четырех сортов нуклеотидов, то во второй цепи последовательность нуклеотидов будет однозначно детерминирована, так что каждому А первой цепи будет соответствовать Т во второй цепи, каждому Т первой цепи – А во второй цепи, каждому Г первой цепи – Ц во второй цепи и каждому Ц первой цепи – Г во второй цепи.

Видно, что указанный структурный принцип, лежащий в основе двутяжного строения молекулы ДНК, позволяет легко понять точное воспроизведение исходной структуры, т.е. точное воспроизведение информации, записанной в цепях молекулы в виде определенной последовательности из 4 сортов нуклеотидов. Действительно, синтез новых молекул ДНК в клетке происходит только на базе уже имеющихся молекул ДНК. При этом две цепи исходной молекулы ДНК начинают с одного из концов расходиться, и на каждом из разошедшихся однотяжных участков начинает собираться из присутствующих в среде свободных нуклеотидов вторая цепь в точном соответствии с принципом комплементарности. Процесс расхождения двух цепочек исходной молекулы ДНК продолжается, и соответственно обе цепи дополняются комплементарными цепями. В результате, как видно на схеме, вместо одной возникают две молекулы ДНК, в точности идентичные исходной. В каждой получившейся «дочерней» молекуле ДНК одна цепь, как видно, целиком происходит от исходной, а другая является заново синтезированной.

Главное, что еще раз необходимо подчеркнуть, это то, что потенциальная способность к точному воспроизведению заложена в самой двутяжной комплементарной структуре ДНК как таковой, и открытие этого, безусловно, составляет одно из главных достижений биологии.

Однако проблема воспроизведения (редупликации) ДНК не исчерпывается констатацией потенциальной способности ее структуры к точному воспроизведению своей нуклеотидной последовательности. Дело в том, что ДНК сама по себе вовсе не является самовоспроизводящей молекулой. Для осуществления процесса синтеза – воспроизведения ДНК по описанной выше схеме необходима деятельность специального ферментативного комплекса, носящего название ДНК-полимеразы. По-видимому, именно этот фермент осуществляет последовательно идущий от одного конца молекулы ДНК к другому процесс расхождения двух цепей с одновременной полимеризацией на них свободных нуклеотидов по комплементарному принципу. Таким образом, ДНК, подобно матрице, лишь задает порядок расположения нуклеотидов в синтезирующихся цепях, а сам процесс ведет белок. Работа фермента в ходе редупликации ДНК представляет собой на сегодня одну из наиболее интересных проблем. По-видимому, ДНК-полимераза как бы активно ползет вдоль двутяжной молекулы ДНК от одного ее конца к другому, оставляя позади себя раздвоенный редуплицированный «хвост». Физические принципы такой работы данного белка пока не ясны.

Однако ДНК и отдельные ее функциональные участки, несущие информацию о структуре белков, сами непосредственного участия в процессе создания белковых молекул не принимают. Первым этапом на пути к реализации этой информации, записанной в цепях ДНК, является так называемый процесс транскрипции, или «переписывания». В этом процессе на цепи ДНК, как на матрице, происходит синтез химически родственного полимера – рибонуклеиновой кислоты (РНК). Молекула РНК представляет собой одну цепь, мономерами которой являются четыре сорта рибонуклеотидов, которые рассматриваются как небольшая модификация четырех сортов дезоксирибонуклеотидов ДНК. Последовательность расположения четырех сортов рибонуклеотидов в образующейся цепи РНК в точности повторяет последовательность расположения соответствующих дезоксирибонуклеотидов одной из двух цепей ДНК. Таким путем нуклеотидная последовательность генов копируется в виде молекул РНК, т.е. информация, записанная в структуре данного гена, целиком переписывается на РНК. С каждого гена может сниматься большое, теоретически неограниченное количество таких «копий» – молекул РНК. Эти молекулы, переписанные во многих экземплярах как «копии» генов и стало быть несущие ту же информацию, что и гены, расходятся по клетке. Они уже непосредственно входят в связь с белоксинтезирующими частицами клетки и принимают «личное» участие в процессах создания белковых молекул. Другими словами, они переносят информацию от места, где она хранится, в места ее реализации. Соответственно эти РНК обозначают как информационные или матричные РНК, сокращенно мРНК (или иРНК).

Выяснено, что цепь информационной РНК синтезируется, прямо используя соответствующий участок ДНК в качестве матрицы. Синтезируемая цепь мРНК при этом точно копирует по своей нуклеотидной последовательности одну из двух цепей ДНК (принимая, что урацилу (У) в РНК соответствует его производное тимин (Т) в ДНК). Это происходит на основе того же структурного принципа комплементарности, который определяет редупликацию ДНК (рис. 18). Оказалось, что когда происходит синтез мРНК на ДНК в клетке, то в качестве матрицы для образования цепи мРНК используется лишь одна цепь ДНК. Тогда каждому Г этой цепи ДНК будет соответствовать Ц в строящейся цепи РНК, каждому Ц цепи ДНК – Г в цепи РНК, каждому Т цепи ДНК – А в цепи РНК и каждому А цепи ДНК – У в цепи РНК. В итоге получающаяся цепь РНК будет строго комплементарна к матричной цепи ДНК и, следовательно, идентичная по последовательности нуклеотидов (принимая Т = У) второй цепи ДНК. Таким образом происходит «переписывание» информации с ДНК на РНК, т.е. транскрипция. «Переписанные» сочетания нуклеотидов цепи РНК уже непосредственно определяют расстановку соответствующих, кодируемых ими аминокислот в цепи белка.

Здесь, как и при рассмотрении редупликации ДНК, в качестве одного из наиболее существенных моментов процесса транскрипции необходимо указать на его ферментативный характер. ДНК, являющаяся матрицей в этом процессе, целиком определяет расположение нуклеотидов в синтезирующейся цепи мРНК, всю специфичность образуемой РНК, но сам ход процесса осуществляется особым белком – ферментом. Этот фермент называется РНК-полимеразой. Его молекула имеет сложную организацию, позволяющую ему активно продвигаться вдоль молекулы ДНК, одновременно синтезируя цепочку РНК, комплементарную к одной из цепей ДНК. Молекула ДНК, служащая матрицей, при этом не расходуется и не изменяется, сохраняясь в прежнем виде и будучи всегда готова для такого переписывания с нее неограниченного количества «копий» – мРНК. Поток этих мРНК от ДНК к рибосомам и составляет тот поток информации, который обеспечивает программирование белоксинтезирующего аппарата клетки, всей совокупности ее рибосом.

Таким образом, рассмотренная часть схемы описывает поток информации, идущий от ДНК в виде молекул мРНК к внутриклеточным частицам, синтезирующим белки. Теперь мы обратимся к потоку иного рода – к потоку того материала, из которого должен создаваться белок. Элементарными единицами – мономерами – белковой молекулы являются аминокислоты, которых имеется 20 различных сортов. Для создания (синтеза) белковой молекулы свободные аминокислоты, присутствующие в клетке, должны быть вовлечены в соответствующий поток, поступающий в белоксинтезирующую частицу, и уже там расставлены в цепочку определенным уникальным образом, диктуемым информационной РНК. Такое вовлечение аминокислот – строительного материала для создания белка – осуществляется через присоединение свободных аминокислот к особым молекулам РНК относительно небольшого размера. Эти РНК, служащие для присоединения к ним свободных аминокислот, не будут информационными, а несут иную- адапторную – функцию, смысл которой будет виден дальше. Аминокислоты присоединяются к одному из концов небольших цепочек трансферных РНК (тРНК), по одной аминокислоте на одну молекулу РНК.

Для каждого сорта аминокислоты в клетке существуют свои специфические, присоединяющие только этот сорт аминокислоты молекулы адапторных РНК. В таком навещенном на РНК виде, аминокислоты и поступают в белоксинтезирующие частицы.

Центральным моментом процесса биосинтеза белка является слияние этих двух внутриклеточных потоков – потока информации и потока материала – в белоксинтезирующих частицах клетки. Эти частицы называются рибосомами. Рибосомы представляют собой ультрамикроскопические биохимические «машины» молекулярных размеров, где из поступающих аминокислотных остатков, согласно плану, заключенному в информационной РНК, собираются специфические белки. Хотя на данной схеме (рис. 19) изображена лишь одна частица, каждая клетка сдержит тысячи рибсом. Количество рибосом определяет общую интенсивность белкового синтеза в клетке. Диаметр одной рибосомной частицы около 20 нм. По своей химической природе рибосома – рибонуклеопротеид: она состоит из особой рибосомной РНК (это третий известный нам класс РНК в дополнение к информационным и адапторным РНК) и молекул структурного рибосомного белка. Вместе это сочетание нескольких десятков макромолекул образует идеально организованную и надежную «машину», обладающую свойством прочитывать информацию, заключенную в цепи мРНК, и реализовать ее в виде готовой белковой молекулы специфического строения. Поскольку существо процесса состоит в том, что линейная расстановка 20 сортов аминокислот в цепи белка однозначно детерминируется расположением четырех сортов нуклеотидов в цепи химически совсем иного полимера – нуклеиновой кислоты (мРНК), то этот процесс, происходящий в рибосоме, принято обозначать термином «трансляция», или «перевод» - перевод как бы с 4-буквенного алфавита цепей нуклеиновых кислот на 20-буквенный алфавит белковых (полипептидных) цепей. Как видно, в процессе трансляции участвуют все три известных класса РНК: информационная РНК, являющаяся объектом трансляции, рибосомная РНК, играющая роль организатора белоксинтезирующей рибонуклеопротеидной частицы – рибосомы, и адапторные РНК, осуществляющие функцию переводчика.

Процесс синтеза белка начинается при образовании соединений аминокислот с молекулами адапторных РНК, или тРНК. При этом сначала происходит энергетическая «активация» аминокислоты за счет ее ферментативной реакции с молекулой аденозинтрифосфата (АТФ), а затем «активированная» аминокислота соединяется с концом относительно недлинной цепочки тРНК, приращение химической энергии активированной аминокислоты запасается при этом в виде энергии химической связи между аминокислотой и тРНК.

Но одновременно с этим решается и вторая задача. Дело в том, что реакцию между аминокислотой и молекулой тРНК ведет фермент, обозначаемый как аминоацил-тРНК-синтетаза. Для каждого из 20 сортов аминокислот существуют свои особые ферменты, осуществляющие реакцию с участием только данной аминокислоты. Таким образом, существует не менее 20 ферментов (аминоацил-тРНК-синтетаза), каждый из которых специфичен для одного сорта аминокислоты. Каждый из этих ферментов может вести реакцию не с любой молекулой тРНК, а лишь с теми, которые несут строго определенное сочетание нуклеотидов в своей цепи. Таким образом, благодаря существованию набора столь специфических ферментов, различающих, с одной стороны, природу аминокислоты и, с другой – нуклеотидную последовательность тРНК, каждый из 20 сортов аминокислот оказывается «приписанным» только определенным тРНК с данным характерным нуклеотидным сочетанием.

Схематически некоторые моменты процесса биосинтеза белка, насколько мы их представляем на сегодняшний день, даны на рис. 19.

Здесь прежде всего видно, что молекула информационной РНК соединена с рибосомой или, как говорят, рибосома «запрограммирована» информационной РНК. В каждый данный момент непосредственно в самой рибосоме находятся лишь относительно короткий отрезок цепи мРНК. Но именно этот отрезок при участии рибосомы может взаимодействовать с молекулами адапторных РНК. И здесь снова главную роль играет уже дважды разбиравшийся выше принцип комплементарности.

В этом и состоит объяснение механизма того, почему данному триплету цепи мРНК соответствует строго определенная аминокислота. Видно, что необходимым промежуточным звеном, или адаптором, при «узнавании» каждой аминокислотой своего триплета на мРНК является адапторная РНК (тРНК).

Далее на схеме (см. рис. 19) видно, что в рибосоме помимо рассмотренной только что молекулы тРНК с навешенной аминокислотой находится еще одна молекула тРНК. Но, в отличие от рассмотренной выше молекулы тРНК, эта молекула тРНК своим концом присоединена к концу находящейся в процессе синтеза белковой (полипептидной) цепочки. Такое положение отражает динамику событий, происходящих в рибосоме в процессе синтеза белковой молекулы. Эту динамику можно представить себе следующим образом. Начнем с некоего промежуточного момента, отраженного на схеме и характеризующегося наличием уже начавшей строиться белковой цепочки, присоединенной к ней тРНК и только что вошедшей в рибосому и связавшейся с триплетом новой молекулы тРНК с соответствующей ей аминокислотой. По-видимому, сам акт присоединения молекулы тРНК к расположенному в данном месте рибосомы триплету мРНК приводит к такой взаимной ориентации и тесному контакту между аминокислотным остатком и строящейся цепью белка, что между ними возникает ковалентная связь. Связь возникает таким образом, что конец строящейся белковой цепи, на схеме присоединенный к тРНК, переносится от этой тРНК на аминокислотный остаток поступившей аминоацил-тРНК. В результате «правая» тРНК, сыграв роль «донора», окажется свободной, а белковая цепь – переброшенной на «акцептор» - «левую» (поступившую) аминоацил-тРНК, в итоге белковая цепь окажется удлиненной на одну аминокислоту и присоединенной к «левой» тРНК. Вслед за этим происходит переброска «левой» тРНК вместе со связанным с ней триплетом нуклеотидов мРНК «вправо», тогда прежняя «донорная» молекула тРНК окажется вытесненной отсюда и уйдет из рибосом, на ее месте появится новая тРНК со строящейся цепью белка, удлиненной на один аминокислотный остаток, а цепь мРНК будет продвинута относительно рибосомы на один триплет вправо. В результате продвижения цепи мРНК на один триплет вправо в рибосоме появится следующий вакантный триплет (УУУ), и к нему немедленно по комплементарному принципу присоединится соответствующая тРНК с аминокислотой (фенилаланил-тРНК). Это опять вызовет образование ковалентной (пептидной) связи между строящейся цепью белка и фенилаланиновым остатком и вслед за этим продвижение цепи мРНК на один триплет вправо со всеми вытекающими отсюда последствиями и т.д. Таким путем осуществляется последовательно, триплет за триплетом, протягивание цепи информационной РНК через рибосому, в результате чего цепь иРНК »прочитывается» рибосомой целиком, от начала до конца. Одновременно и сопряженно с этим происходит последовательное, аминокислота за аминокислотой, наращивание белковой цепочки. Соответственно в рибосому одна за другой поступают молекулы тРНК с аминокислотами и выходят молекулы тРНК без аминокислот. Оказываясь в растворе вне рибосомы, свободные молекулы тРНК снова соединяются с аминокислотами и опять несут их в рибосому, сами же, таким образом, циклично обращаясь без разрушения и изменения.

Глава 4. Морфология ядерных структур

Роль ядерных структур в жизнедеятельности клетки

Приведенный в главе 2 краткий обзор основных процессов, связанных с синтезом белка, в принципе одинаковых у всех форм живого, указывает на особое значение клеточного ядра. Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую – с ее реализацией, с обеспечением синтеза белка.

В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация и разъединение (сегрегация) молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и количественном смысле объемы генетической информации. В ядре эукариот происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.

Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственного аппарата белкового синтеза. Это не только синтез, транскрипция, на молекулах ДНК разных информационных РНК, но также транскрипция всех видов трансферных РНК и рибосомных РНК. В ядрах эукариотических клеток происходит «созревание» (процессинг, сплайсинг) первичных транскриптов. В ядре эукариот происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал воспроизводится и функционирует. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом. Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке ли к грубым его нарушениям.

Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков – основных функционеров в жизнедеятельности клетки.

Однако, что необходимо еще раз подчеркнуть, что функционирование ядра как системы хранения и реализации генетической информации сопряжено, неразрывно связано, с другими функциональными системами клетки, которые обеспечивают работу ядра специальными белками, потоком предшественников, энергией и пр.

Ядерные компоненты прокариот

Как уже говорилось клетки царства прокариотических или «доядерных» организмов, не имеют обособленного клеточного ядра. Однако у всех прокариотических клеток есть аналог ядра эукариот, который носит название нуклеоид или нуклеоплазма. Нуклеоид прокариот можно отнести к собственно ядерным структурам из-за того, что он содержит ДНК. Нуклеоид достаточно четко выявляется в световом микроскопе после специфической окраски на ДНК по методу Фёльгена или при окраске флуорохромами. Его можно наблюдать и с помощью фазово-контрастного устройства у крупных бактерий или сине-зеленых водорослей, как темное и более контрастное образование в срединной части клетки. На ультратонких срезах зона нуклеоида представлена тонкими рыхлыми сетями фибрилл толщиной 2-7 нм (рис. 1, 20). Эта зона нуклеоида или нуклеоплазмы на ультратонких срезах свободна от других структур и выглядит более светлой по сравнению с окружающей цитоплазмой, заполненной рибосомами, различными гранулами и мембранами. Иногда на срезах можно наблюдать контакты фибрилл нуклеоида с плазматической мембраной, с ее выростами.

Нуклеоиды бактерий можно выделить, их состав и структура изучены довольно подробно, они на 80% состоят из ДНК, кроме которой обнаруживаются различные белки (20%) и РНК.

Количество ДНК в прокариотических клетках значительно меньше, чем в клетках эукариот. Например, бактерия E. coli содержит 5 х 10-3 пг* ДНК, которая кодирует около 2000 генов, в то время как в ядре клетки человека содержится около 6 пг ДНК, что соответствует огромному (105) числу генов.

С помощью метода адиоавторграфии меченных молекул ДНК в световом микроскопе было обнаружено, что бактериальные ДНК представляют собою замкнутые циклы. У E. coli периметр такого кольца составляет около 1,6 мм, и считается, что на клетку приходится одна гигантская циклическая молекула ДНК, одна бактериальная хромосома или генофор с молекулярной массой 4 х 109 Д. Самая маленькая бактериальная хромосома обнаружена в клетках

-------

* Единицы измерения ДНК: пг – 1 х 10-12 г; Да – 1,67-24 г; 1 нуклеотидная пара (н.п.) – 1 х 103 Д, величина н.п. ~ 0,34 нм.

микоплазмы – 0,25 мм (для сравнения, длина ДНК на одну хромосому эукариотической дрожжевой клетки составляет около 4,6 мм, а у человека – 40 мм (!) в 1 хромосоме).

У ряда бактерий, например у B. subtilis имеется от 2 до 9 одинаковых молекул ДНК и соответственно несколько нуклеоидов. В других случаях (Azotobacter vinelandii) около 40 хромосом организованы в один нуклеоид.

С помощью авторадиографической методики было также обнаружено, что репликация такой кольцевой хромосомы у E. coli начинается на одной исходной (origin) точке репликации, образуются две репликационные вилки, которые по мере синтеза ДНК движутся вдоль молекулы до терминальной, конечной точки (рис. 21). Тем самым вся такая гигантская молекула ДНК представляет единицу репликации, репликон. Скорость репликации у бактерий составляет около 30 мкм в мин., что согласуется со временем удвоения клеток равным около 40 мин.

Бактериальные хромосомы всегда связаны с плазматической мембраной через специфические мембранные белки, которые взаимодействуют с ДНК в зоне старта ее синтеза (рис. 22). В процессе клеточного деления существенных изменений в компактности нуклеоплазмы не наблюдается, в отличие от эукариотических хромосом.

Такие кольцевые молекулы ДНК бактерий были получены при полном удалении белков (депротеинизация). Если же изучать выделенные целые нуклеоиды бактерий, то они представляют собой тела, состоящие из многочисленных суперспирализованных петель ДНК, отходящих от плотной центральной области (рис. 23). В одну такую петлю или домен входит до 10-15 мкм ДНК, или около 40 000 н.п., а всего таких петель – около 120.

Обработка выделенных нуклеоидов РНК-азой и протеолитическими ферментами приводит к разрыхлению центральной области нуклеоидов, а короткая обработка ДНК-азой – к снятию сверхспирализации петель, и декомпактизации всего нуклеоида. Таким образом было показано, что компактизация нуклеоида связана с наличием связок, содержащих РНК и некоторые белки. Тем самым гигантская кольцевая молекула – хромосома с помощью РНК и белков многократно складывается, образуя многочисленные петли, ДНК которых подвергается сверхспирализации, что приводит к значительной компактизации всего комплекса, который и представляет собой нуклеоид. Степень компактизации ДНК в нуклеоиде бактерий достигает 1000 крат, а концентрация ДНК доходит до 10 мг/мл (!). Необходимо подчеркнуть, что часть ДНК нуклеоида связана с небольшим числом специальных основных белков, отличных от гистонов эукариот. Одна молекула одного из таких белков (H-NS) приходится на 400 н.п. ДНК. С петлями ДНК нуклеоида связано большое число молекул различных синтезируемых РНК и рибосом, которые обнаруживаются по периферии нуклеоплазмы.

Одна из моделей организации нуклеоида предполагает, что центральная его часть представлена неактивной и сверхспирализованной ДНК, тогда как по его периферии расположены деспирализованные петли, на которых происходит синтез различных РНК (рис. 24).

Отличительной чертой ядерных структур прокариот является то, что у них синтез РНК и синтез белка может происходить одновременно: рибосомы связываются с еще не до конца синтезированными молекулами иРНК и производят на них синтез белка. Таким образом возникает тройственный синтетический комплекс: ДНК – синтезирующая цепь РНК – рибосомы с синтезируемой полипептидной цепочкой (рис. 25). Такая ситуация возможна лишь в том случае, когда образующаяся молекула иРНК не подвергается дальнейшей модификации типа процессинга, характерного для эукариотических клеток (см.ниже). У прокариотов, таким образом, процессы транскрипции и трансляции не разобщены территориально, в то время как у эукариотических клеток эти процессы протекают в двух разных компартментах, разделенных специальной ядерной оболочкой.

Отличается поведение ядерного материала прокариотов от такового эукариот при делении клетки, и в течение клеточного цикла.

Клеточный цикл – это время существования клетки от деления до деления. Как уже указывалось, деление всех типов клеток происходит только после удвоения ДНК. У бактерий часто сам процесс разделения тела клетки, цитотомия, не связана с окончанием синтеза ДНК, т.к. до наступления клеточного деления может начаться второй или даже третий раунд репликации ДНК. В результате такого беспрерывного синтеза ДНК в быстро растущих культурах на каждую разделившуюся клетку приходится одна кольцевая хромосома на промежуточных стадиях ее дальнейшего удвоения (рис. 26), т.е. каждая дочерняя клетка сразу после деления уже содержит частично реплицированный геном.

При делении бактериальных клеток не происходит особой конденсации ДНК в составе нуклеоида. По мере роста клетки в длину зона нуклеоида после синтеза ДНК увеличивается, а затем делится с помощью специального механизма. Обособление и разъединение двух дочерних хромосом связано с расхождением мест прикрепления хромосом к плазматической мембране (см. ниже).

Ядро эукариотических клеток

Сам термин «ядро» впервые был применен Брауном в 1833 г. Для обозначения шаровидных постоянных структур в клетках растений. Позднее такую же структуру описали во всех клетках высших организмов.

Ядерный аппарат эукариотических клеток имеет ряд отличий от прокариотических. Во-первых, ДНК-содержащий компонент отделен от цитоплазмы специальной оболочкой (ядерная оболочка), во-вторых, количество ДНК в ядах эукариот в тысячи раз больше, чем в составе нуклеоидов бактерий, в-третьих, ДНК эукариот представляет собой сложный нуклеопротеидный комплекс, образующий специальную структуру – хроматин, из которого и состоят эукариотические хромосомы. Далее – в состав ядер эукариот входят несколько физически не связанных хромосом, каждая из которых содержит одну линейную гигантскую молекулу ДНК. Каждая хромосомная ДНК представляет собой полирепликонную структуру, т.е. содержит множеств автономно реплицирующихся участков. Синтез и образование транскриптов эукариотических клеток сопровождается процессами вторичной их перестройки, «созревания», включающих в себя как фрагментацию (процессинг), так и сращивание отдельных фрагментов ДНК (сплайсинг). Наконец, в ядрах не происходит синтеза белков, т.е. в эукариотических клетках процессы синтеза ДНК и РНК разобщены от процесса синтеза белков.

Клеточное ядро, обычно одно на клетку (есть примеры многоядерных клеток), состоит из ядерной оболочки, отделяющей его от цитоплазмы, хроматина, ядрышка и других продуктов синтетической активности, ядерного белкового остова (матрикса) и кариоплазмы (или ядерного сока) (рис. 27.). Эти основные компоненты встречаются практически во всех неделящихся клетках эукариотических одно- или многоклеточных организмов.

Главный компонент ядер, хроматин, является структурой, выполняющей генетическую функцию клетки, в хроматиновой ДНК заложена практически вся генетическая информация. Ядерная оболочка выполняет сложную барьерно-рецепторную, а также транспортную и каркасную функцию. Нехроматиновый ядерный белковый остов (матрикс) обеспечивает не только пространственное расположение хромосом в ядре, но и участвует в их функциональной активности. Одним из хромосомных участков, определяющих синтез рРНК и образование клеточных рибосом, является ядрышко. Кроме того в ядре в связи с хроматином и матриксом обнаруживаются различные рибонуклеопротеидные структуры, содержащие разные типы РНК. Между всеми этими компонентами заключена жидкая фаза клеточного ядра, кариоплазма, в которой протекают многие процессы, связанные как с ядерным метаболизмом, так и с внутриядерным транспортом белков и РНК.

При наблюдении многих живых клеток, особенно растительных или же клеток после фиксации и окраски, внутри ядра выявляются зоны плотного вещества, которое хорошо воспринимает разные красители, особенно основные. Благодаря такой способности хорошо окрашиваться этот компонент ядра и получил название «хроматин» (Флемминг, 1880). Способность хроматина воспринимать основные (щелочные) красители указывает на его кислотные свойства, которые определяются тем, что в состав хроматина входит ДНК в комплексе с белками. Такими же свойствами окрашиваемости и содержанием ДНК обладают и хромосомы, которые можно наблюдать во время митотического деления клеток.

В отличие от прокариотических клеток, ДНК-содержащий материал хроматина эукариот, может пребывать в двух альтернативных состояниях: деконденсированном в интерфазе и в максимально уплотненном – во время митоза, в составе митотических хромосом.

В неделящихся (интерфазных) клетках хроматин, выявляемый в обычный микроскоп, может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Часто он особенно четко выявляется на периферии ядра (пристеночный, маргинальный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0,3 мкм) и длинных тяжей, образующих подобие внутриядерной сети. Такие ядра часто встречаются в клетках растений (рис. 28, 29, 30).

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсирован, тогда эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматин). Показано многочисленными работами, что степень деконденсации хромосомного материала, хроматина, в интерфазе может отражать функциональную нагрузку этой структуры. Чем более дифффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Так, в клетках лимфоцитов хроматин образует значительные скопления по периферии клеточного ядра. При стимуляции этих клеток к синтезу ДНК по мере включения предшественника ДНК 3Н-тимидина происходит постепенная деконденсация хроматина. Таким же образом меняется структура хроматина при синтезе РНК. Падение синтеза ДНК и РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина. Так, в эритроцитах низших позвоночных практически весь хроматин ядер находится в конденсированном состоянии, и в этих ядрах не происходит синтеза ни РНК, ни ДНК. Если же ядра этих клеток стимулировать к синтезу РНК, например, в гетерокарионах (см. ниже), то они переходят в диффузное состояние.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде телец – хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включения предшественников ДНК и РНК.

Исходя из этого можно считать, что хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном – в состоянии метаболического покоя при максимальной их конденсации, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Эухроматин и гетерохроматин

Было отмечено многими исследователями, что степень структуризации, конденсации хроматина в интерфазных ядрах может быть выражена в разной мере. Так в интенсивно делящихся и в мало специализированных клетках ядра имеют диффузную структуру, в них кроме узкого периферического ободка конденсированного хроматина встречается небольшое число мелких хромоцентров, основная же часть ядра занята диффузным, деконденсированным хроматином. С другой стороны в клетках высокоспециализированных или в клетках, заканчивающих свой жизненный цикл, хроматин представлен в виде массивного периферического слоя и крупных хромоцентров, блоков конденсированного хроматина. Такую структуру имеют, например, ядра нормобластов (одна из стадий дифференцировки эритроцитов), ядра зрелых лейкоцитов. Эти два примера могут иллюстрировать общее правило: чем больше в ядре доля конденсированного хроматина, тем меньше метаболическая активность ядра. При естественной или экспериментальной инактивации ядер происходит прогрессивная конденсация хроматина, и, наоборот, при активации ядер увеличивается доля диффузного хроматина.

Однако при метаболической активации не всякие участки конденсированного хроматина могут переходить в диффузную форму. Еще в начале 30-х годов было замечено Э. Гейтцем, что в интерфазных ядрах существуют постоянные участки конденсированного хроматина, наличие которого не зависит от степени дифференцированнности ткани или от функциональной активности клеток. Такие участки получили название гетерохроматина, в отличие от остальной массы хроматина – эухроматина (собственно хроматина). По этим представлениям, гетерохроматин – компактные участки хромосом, которые в профазе появляются раньше других частей в составе митотических хромосом, и в телофазе не деконденсируются, переходя в интерфазное ядро в виде интенсивно красящихся плотных структур (хромоцентры). Первоначально понятие гетерохроматина имело сугубо морфологическое значение, потому что, изучая препараты окрашенных ядер, конечно нельзя знать, может ли данный участок конденсированного хроматина, хромоцентр, перейти в будущем в разрыхленное, эухроматическое состояние, или нет. В связи с этим в специальной цитологической литературе часто без всякого основания любой участок конденсированного хроматина стали называть гетерохроматином. Процесс же общей конденсации хроматина, например в ядрах лейкоцитов, называли гетерохроматизацией ядер. На самом же деле в составе ядерного хроматина только лишь некоторые участки практически никогда не теряют особого конденсированного состояния. Такими постоянно конденсированными зонами чаще всего являются центромерные и теломерные участки хромосом. Кроме них постоянно конденсированными могут быть также некоторые участки, входящие в состав плечей хромосом – вставочный или интеркалярный гетерохроматин, который в ядрах также представлен в виде хромоцентров. Такие постоянно конденсированные участки хромосом в интерфазных ядрах сейчас принято называть конститутивным (постоянным) гетерохроматином. Здесь же необходимо отметить, что участки конститутивного гетерохроматина обладают целым рядом особенностей, которые отличают его от остального хроматина. Конститутивный гетерохроматин генетически не активен, он не транскрибируется, реплицируется он позже всего остального хроматина, в его состав входит особая (сателлитная) ДНК, обогащенная высокоповторяющимися последовательностями нуклеотидов (см. ниже); он локализован в центромерных, теломерных и интеркалярных зонах митотических хромосом. Доля конститутивного хроматина может быть неодинаковой у разных объектов. Так у млекопитающих на него приходится 10-15% всего генома, а у некоторых амфибий – даже до 60%. Функциональное значение конститутивного гетерохроматина до конца не выяснено, предполагается, что он несет ряд важных функций, связанных со спариванием гомологов в мейозе, со структуризацией интерфазного ядра, с некоторыми регуляторными функциями.

Вся остальная, основная масса хроматина ядра может менять степень своей компактизации в зависимости от функциональной активности, она относится к эухроматину. Эухроматические неактивные участки, которые находятся в конденсированном состоянии, стали называть факультативным гетерохроматином, подчеркивая необязательность такого его состояния. Хорошим примером факультативного гетерохроматина может служить X-хромосома в организме человека. В клетках мужской особи X-хромосома деконденсирована, она активна, транскрибируется и морфологически не выявляется из-за своего рыхлого, диффузного состояния. В клетках женского организма, где присутствуют две X-хромосомы, одна из них находится в активном, диффузном состоянии, а вторая – в неактивном, конденсированном, она временно гетерохроматизована. В этом состоянии она может существовать в течение всей жизни организма. Но потомки ее, попадая в клетки мужского организма следующего поколения, снова будут активированы.

В дифференцированных клетках всего лишь около 10% генов находится в активном состоянии, остальные гены инактивированы и, соответственно, находятся в составе конденсированного хроматина (факультативный гетерохроматин). Это обстоятельство объясняет, почему большая часть хроматина ядра структурирована.

В таблице 1. даны сравнительные общие характеристики эухроматических и гетерохроматических районов интерфазных хромосом.

– Конец работы –

Эта тема принадлежит разделу:

ЧАСТЬ I. Введение. Предмет клеточной биологии ГЛАВА 1. Клеточная теория

Предисловие... ЧАСТЬ I Введение Предмет клеточной биологии... ГЛАВА Клеточная теория Клетка элементарная единица живого...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Другие специальные методы электронной микроскопии биологических объектов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая организация митотических хромосом
ЧАСТЬ III. Ядерные транскрипты и их транспорт ГЛАВА 8. Ядрышко – источник рибосом Строение рибосом Чем определяется число ядрышек в клетке Множеств

ДНК хроматина
В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие эк

Репликация эукариотических ДНК
Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом бактериальная циклическая ДНК является одним

Петлевые домены ДНК – третий уровень структурной организации хроматина
Расшифровка принципа строения элементарных хромосомных компонентов – нуклеосом и 30 нм фибрилл – еще мало что дает для понимания основ трехмерной организации хромосом, как в интерфазе, так и в мито

Часть III
Ядерные транскрипты и их транспорт Одна из важнейших функций клеточного ядра является реализация генетической информации в виде синтеза целого ряда РНК или служащих

Строение рибосом
Рибосома представляет собой элементарную клеточную машину синтеза любых белков клетки. Все они построены в клетке одинаково, имеют одинаковую молекулярную композицию, выполняют одинаковую функцию –

Чем определяется число ядрышек в клетке
Как уже говорилось, все клетки имеют обязательные внутриядерные структуры – ядрышки. Это правило имеет небольшое число исключений, которые, как будет видно, только подчеркивают важность и необходим

Сферосомы
Это мембранные пузырьки, встречающиеся в клетках растений, они окрашиваются липофильными красителями, имеют высокий коэффициент преломления и поэтому хорошо видны в световой микроскоп. Сферосомы об

Общая морфология
Митохондрии или хондриосомы (от греч. mitos– нить, chondrion- зернышко, soma- тельце) представляют собой гранулярные или нитевидные органеллы, присутствующие в цитоплазме простейших, растений и жив

Функции митохондрий
Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ. В клетках процессы окисления и выделения энергии, освобождающиеся

Окислительное фосфорилирование у бактерий
У прокариотических клеток, способных к окислительному фосфорилированию, элементы цикла трикарбоновых кислот локализованы прямо в цитоплазме, а ферменты дыхательной цепи и фосфорилирования связаны с

Увеличение числа митохондрий
Так же, как и другие органеллы цитоплазмы, митохондрии могут увеличиваться в числе, что особенно заметно при делении клеток или при увеличении функциональной нагрузки клетки, более того, происходит

Авторепродукция митохондрий
Исследования последних лет привели к удивительным открытиям: двумембранные органеллы обладают полной системой авторепродукции. Эта система полная в том смысле, что в митохондриях и пластидах открыт

Хондриом
Хондриом – это совокупность всех митохондрий в одной клетке. Оказалось, что такая совокупность может быть различной в зависимости от типа клеток. Так, во многих клетках хондриом представлен разрозн

Общие свойства микрофиламентов.
  Микрофиламенты встречаются во всех клетках эукариот. Особенно они обильны в мышечных волокнах и клетках – высокоспециализированных клетках, выполняющих функции сокращения мышц. Микр

Акто-миозиновые комплексы немышечных клеток
Акто-миозиновые комплексы участвуют в движении ламеллоплазмы. Так молекулы миозина I были выявлены на ведущем краю движущихся амебных форм диктиостелиума, в то время как миозин II типа обнаруживалс

Центросомный цикл
Было обнаружено, что строение и активность центросом меняются в зависимости от периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения (рис. 283).

Базальные тельца. Строение и движение ресничек и жгутиков.
Как уже указывалось, у многих клеток животных, вышедших из клеточного цикла, в G0-стадии центриоли принимают участие в образовании аппарата движения – ресничек. Их две группы: кинетоц

Часть VII. Механизмы клеточного деления.
Глава 24. Митотическое деление клеток. Общая организация митоза Как постулирует клеточная теория, увеличение числа клеток происходит исключительно

Фактор стимуляции митоза
Расшифровка регуляции процессов клеточного деления началась в 70е годы прошлого века, когда были найдены методы слияния разных клеток, методы получения гетерокарионов (о них см. главу 2). Оказалось

Циклины
Циклин был обнаружен при изучении включения меченых аминокислот в синхронно дробящиеся яйца морского ежа. Было обнаружено, что в одном из белковых пиков на электрофореграммах метка периодически то

Регуляция клеточного цикла у млекопитающих
На предыдущей схеме рассмотрены только конечные звенья цепи событий, заканчивающихся делением клетки. Однако, как уже говорилось, деление клетки обязательно связано с репликацией ДНК. Следовательно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги